

Proprietary and Confidential

Version 31p

Revised and Updated: January 1, 2013



POINTER TELOCATION LTD. 14 HAMELACHA ST., ROSH HA'AYIN 48091, ISRAEL • TEL: 972-3-5723111 • FAX: 972-3-5723100 • www.pointer.com

Copyright © 2013 by Pointer Telocation, Ltd.





# Legal Notices

## IMPORTANT

1. All legal terms and safety and operating instructions should be read thoroughly before the product accompanying this document is installed and operated.

2. This document should be retained for future reference.

3. Attachments, accessories or peripheral devices not supplied or recommended in writing by Pointer Telocation Ltd. may be hazardous and/or may cause damage to the product and should not, in any circumstances, be used or combined with the product.

#### General

The product accompanying this document is not designated for and should not be used in life support appliances, devices, machines or other systems of any sort where any malfunction of the product can reasonably be expected to result in injury or death. Customers of Pointer Telocation Ltd. using, integrating, and/or selling the product for use in such applications do so at their own risk and agree to fully indemnify Pointer Telocation Ltd. for any resulting loss or damages.

#### Warranty Exceptions and Disclaimers

Pointer Telocation Ltd. shall bear no responsibility and shall have no obligation under the foregoing limited warranty for any damages resulting from normal wear and tear, the cost of obtaining substitute products, or any defect that is (i) discovered by purchaser during the warranty period but purchaser does not notify Pointer Telocation Ltd. until after the end of the warranty period, (ii) caused by any accident, force majeure, misuse, abuse, handling or testing, improper installation or unauthorized repair or modification of the product, (iii) caused by use of any software not supplied by Pointer Telocation Ltd., or by use of the product other than in accordance with its documentation, or (iv) the result of electrostatic discharge, electrical surge, fire, flood or similar causes. Unless otherwise provided in a written agreement between the purchaser and Pointer Telocation Ltd., the purchaser shall be solely responsible for the proper configuration, testing and verification of the product prior to deployment in the field.

POINTER TELOCATION LTD.'S SOLE RESPONSIBILITY AND PURCHASER'S SOLE REMEDY UNDER THIS LIMITED WARRANTY SHALL BE TO REPAIR OR REPLACE THE PRODUCT HARDWARE, SOFTWARE OR SOFTWARE MEDIA (OR IF REPAIR OR REPLACEMENT IS NOT POSSIBLE, OBTAIN A REFUND OF THE PURCHASE PRICE) AS PROVIDED ABOVE. POINTER TELOCATION LTD. EXPRESSLY DISCLAIMS ALL OTHER WARRANTIES OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, SATISFACTORY PERFORMANCE AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL POINTER TELOCATION LTD. BE LIABLE FOR ANY INDIRECT, SPECIAL, EXEMPLARY, INCIDENTAL OR CONSEQUENTIAL DAMAGES (INCLUDING WITHOUT LIMITATION LOSS OR INTERRUPTION OF USE, DATA, REVENUES OR PROFITS) RESULTING FROM A BREACH OF THIS WARRANTY OR BASED ON ANY OTHER LEGAL THEORY, EVEN IF POINTER TELOCATION LTD. HAS BEEN ADVISED OF THE POSSIBILITY OR LIKELIHOOD OF SUCH DAMAGES.





## **Intellectual Property**

Copyright in and to this document is owned solely by Pointer Telocation Ltd. Nothing in this document shall be construed as granting you any license to any intellectual property rights subsisting in or related to the subject matter of this document including, without limitation, patents, patent applications, trademarks, copyrights or other intellectual property rights, all of which remain the sole property of Pointer Telocation Ltd. Subject to applicable copyright law, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording or otherwise), or for any purpose, without the express written permission of Pointer Telocation Ltd.

© Copyright 2012. All rights reserved.





|--|

| 1 | Introdu | ction                                                               | 6  |
|---|---------|---------------------------------------------------------------------|----|
|   | 1.1 Abc | out this Document                                                   | 6  |
|   | 1.2 Abt | previations                                                         | 6  |
|   | 1.3 Ref | erences                                                             | 6  |
|   | 1.4 Rev | vision History                                                      | 7  |
| 2 | Telemet | ry Channel (Outbound Messages)                                      | 9  |
|   | 2.1 Ove | erview                                                              | 9  |
|   | 2.2 Sta | tus/Location Message Definition                                     | 9  |
|   | 2.2.1   | Byte-Aligned Table                                                  | 9  |
|   | 2.2.2   | General Details                                                     | 12 |
|   | 2.2.3   | Detailed Per-Field Specifications                                   | 12 |
|   | 2.3 Pro | gramming Data Message Definition                                    | 42 |
|   | 2.3.1   | Message Ingredients                                                 | 42 |
|   | 2.3.2   | Detailed Per-Field Specifications                                   | 43 |
|   | 2.4 Log | ged Fragment of Data Forwarded From Serial Port to Wireless Channel | 44 |
|   | 2.4.1 T | he Container                                                        | 44 |
|   | 2.4.2   | Data path chart                                                     | 46 |
|   | 2.4.3   | Byte-Aligned Table                                                  | 47 |
|   | 2.5 Rea | al Time Data Forwarded From Serial Port to Wireless Channel (Msg 8) | 49 |
|   | 2.5.1   | Message Ingredients                                                 | 49 |
|   | 2.5.2   | Byte-Aligned Table                                                  | 49 |
|   | 2.5.3   | Detailed Per-Field Specifications                                   | 50 |
|   | 2.6 Mod | dular Message (Msg 9)                                               | 52 |
|   | 2.6.1   | Message Ingredients                                                 | 52 |
|   | 2.6.2   | Detailed Per-Field Specifications                                   | 53 |
|   | 2.6.3   | The Firmware Platform Manifest (Sub-Data Type 1)                    | 55 |
|   | 2.6.4   | The CAN Data (Sub-Data Type 2)                                      | 56 |
|   | 2.6.5   | CAN Trigger Module (Sub-Data Type 3)                                | 57 |
|   | 2.6.6   | Logged CAN Trigger Module (Sub-Data Type 3)                         | 58 |
|   | 2.6.7   | Time and Location Stamp Module (Sub-Data Type 4)                    | 60 |
|   | 2.6.8   | Accelerometer Response Module (Sub-Data Type 5)                     | 62 |
|   | 2.6.9   | PSP – UL Messages from Alarm System (Sub-Data Type 6)               | 62 |
|   | 2.6.10  | Usage Counter Update Packet (Sub-Data Type 7)                       | 62 |
|   | 2.6.11  | Command Authentication Update (Sub-Data Type 8)                     | 65 |
|   | 2.6.12  | Neighbor list of the serving GSM cell (Sub-Data Type 9)             | 65 |
|   | 2.6.13  | Maintenance Server Platform Manifest (Sub-Data Type A)              | 69 |
|   | 2.6.14  | Message Forwarded from Keyboard (Sub Data type 0xB)                 | 73 |
|   | 2.6.15  | Compressed vector change report (Sub-Data Type D)                   | 74 |
|   | 2.6.16  | Modular Platform Manifest (Sub. Data 0x12)                          | 78 |
|   | 2.6.17  | Pulse Counter Measurement Response (Sub. Data 0x14)                 | 82 |
| 3 | Comma   | nd Channel (Inbound Messages)                                       | 87 |
|   | 3.1 Ove | erview                                                              | 87 |
|   | 3.2 Ger | neric Command Message Definition                                    | 87 |
|   |         |                                                                     |    |

Page 4 of 113





| 3.2.1    | General Details                                                     | 87  |
|----------|---------------------------------------------------------------------|-----|
| 3.2.2    | Message Ingredients                                                 | 87  |
| 3.2.3    | Byte-Aligned Table                                                  | 88  |
| 3.2.4    | Detailed Per-Field Specifications                                   | 89  |
| 3.3 Prog | gramming Command Definition                                         | 94  |
| 3.3.1    | Message Ingredients                                                 | 94  |
| 3.3.2    | Detailed Per-Field Specifications                                   | 95  |
| 3.4 Gen  | eric Acknowledge Message Definition                                 | 95  |
| 3.4.1    | General Details                                                     | 95  |
| 3.4.2    | Byte-Aligned Table                                                  | 95  |
| 3.4.3    | Detailed Per-Field Specifications                                   | 97  |
| 3.5 For  | ward Data Command Definition                                        | 98  |
| 3.5.1    | Message Ingredients                                                 | 98  |
| 3.5.2    | Detailed Per-Field Specifications                                   | 98  |
| 3.6 Mod  | lular Message Request Definition                                    | 99  |
| 3.6.1    | Message Ingredients                                                 | 99  |
| 3.6.2    | Detailed Per-Field Specifications                                   | 100 |
| 3.6.3    | For Sub-Data Type 1 (Firmware Manifest)                             | 101 |
| 3.6.4    | For Module Type 2 (CAN Data)                                        | 101 |
| 3.6.5    | For Module Type 4 (Time and Location Stamp Module)                  | 101 |
| 3.6.6    | For Module Type 5 (Accelerometer Data)                              | 101 |
| 3.6.7    | Module Type 6 (PSP – UL Messages from CCC to Alarm System)          | 102 |
| 3.6.8    | For Module Type 7: Usage Counter Write/Request Command              | 102 |
| 3.6.9    | For Module Type 8: Command Authentication Table Change              | 104 |
| 3.6.10   | For Module Type 9: Neighbor list of the serving GSM cell request    | 105 |
| 3.6.11   | Forward Data To Keyboard (Sub Data Type 0xB)                        | 105 |
| 3.6.12   | For Modular Platform Manifest request (Sub. Data 0x12)              | 106 |
| 3.6.13   | Modular Pulse Counter Measurement request (Sub. Data 0x14)          | 109 |
| 3.6.14   | CFE Inputs Update message (Msg type 9, sub-data type 0x18) Cello to |     |
| Server   | (Infrustructure)                                                    | 109 |
| 3.6.15   | Request Analog measurements (Msg type 9, sub-data type 0x18)        |     |
| Server t | o Cello                                                             | 112 |
|          |                                                                     |     |





# **1** Introduction

# **1.1** About this Document

This document explains the unit's wireless communication structure. It describes every byte of the incoming/ outgoing packets, which can be sent or received by the unit over-the-air.

# **1.2** Abbreviations

| Abbreviation | Description                                                                                      |
|--------------|--------------------------------------------------------------------------------------------------|
| ACK          | Acknowledge                                                                                      |
| CAN          | Controller Area Network                                                                          |
| CCC          | Command and Control Center                                                                       |
| DB           | Database                                                                                         |
| FMS          | Fleet Management System                                                                          |
| ΟΤΑ          | Over the Air                                                                                     |
| PDU          | Protocol Description Unit (Common name for data SMS)                                             |
| PGN          | Parameter Group Number                                                                           |
| SMS          | Short Message Service (GSM)                                                                      |
| PTR          | Pointer Telocation Ltd.                                                                          |
| PSP          | Pointer Serial Protocol, normally refers to a Car Alarm System interfacing through this protocol |

# **1.3** References

All the reference documents listed in the following table can be downloaded from the support section of the Pointer Website (www.pointer.com).

| #  | Reference                            | Description                                                                                                                                                                                                                                                  |
|----|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. | Cello Programming Manual             | This document describes the features<br>supported by the Cellocator unit and<br>provides details about the<br>parameters of its configuration.                                                                                                               |
| 2. | Cello Hardware Installation<br>Guide | This document provides all necessary<br>information for a technician who is<br>involved in the installation of a Cello-<br>F or Cello-R unit. It describes how to<br>install and verify the proper<br>functioning of the Cello installation<br>kit elements. |
| 3. | Serial Interfaces Specification      | This document describes the serial interface (RS232) protocol                                                                                                                                                                                                |
| 4. | Cello AR interface protocol          | This document describes 1-Wire interface of Cello-AR unit                                                                                                                                                                                                    |

Wireless Communication Protocol 31p

Page 6 of 113





# **1.4 Revision History**

| Version | Date          | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
|---------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 31.6    | June 13, 2011 | Fixed conversion equation for course field of<br>Compressed Tracking message (Msg type 9<br>sub-type D)                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| 31c.1   | July 28, 2011 | Added message type 7, container and updated message type 8.                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| 31c.2   | Sept 15, 2011 | Added description of programming bitmask<br>Added transmission reasons of coasting (21),<br>input dependent over-speed and additional<br>thresholds of GP frequency input.                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| 31c.31  | Oct 18, 2011  | <ul> <li>STR added for TR46 (Driver ID received): <ul> <li>a) Driver / Passanger ID</li> <li>b) Group ID authenticated / not authenticated</li> </ul> </li> <li>Driver/Passenger/Group ID description added (bytes 33-38)</li> <li>Added "Business" / "Privet" Mode monitoring bit (byte 11, bit 5)</li> <li>Added TR and STR for "Trailer Connection Status"</li> <li>Added OTA command to query trailer ID</li> <li>Renamed Transmissions reasons: Input A to Lock, Input B to Unlock, Input C to Unlock2</li> </ul> |  |  |  |
| 31.d    | Jan 25,2012   | Consolidation with Compact/CelloTrack version                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| 31e     | Apr , 2012    | Aligned with released 31e CellAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| 31e 2   | May 22, 2012  | Added CelloTrack Output info                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| 31e 3   | June 17, 2012 | Added modem Telit V2 version                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| 31h 1   | July 17, 2012 | Added STR of Towed Mode (start and stop)<br>Added Operational mode 0x10 (Towed mode)                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| 31j 1   | Sept 5, 2012  | Speed Limiting GeoFence Events (TR,STR)<br>Pulse Counter Modular Req and Response                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| 31G 1   | Nov. 7, 2012  | Added support for Cellotrack3G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| 31i.1   | Nov. 18, 2012 | Added infrastructure for Cellotrack GPS based ignition state.<br>CFE support OTA                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |





| Version | Date        | Description                                                                                                           |
|---------|-------------|-----------------------------------------------------------------------------------------------------------------------|
| 31n.1   |             | CFE GA                                                                                                                |
| 31n.2   | Dec 27 2012 | Cellotrack3G: Charging Power Connect /<br>Disconnected                                                                |
|         |             | SingleWire Temperature Sensors<br>(Infrastructure)                                                                    |
|         |             | 2.6.16, 2.6.13 : Telit veriosn 10.00.033<br>coresponds with version code 30. Ersion code<br>31 is defined as reserved |
| 31p     | 1.1.2013    | CFE Support is defined as infrustructure as it is not supported in 31p                                                |
|         |             | Added Trailer status indication: byte 41, bit1 in type 0                                                              |





# 2 Telemetry Channel (Outbound Messages)

# 2.1 Overview

The telemetry channel comprises four kinds of messages, as described in the following:

- Status/location message the "main" message, which is sent by default, as a reply to a command or as the message of choice when reporting emergency situations. This message has a message type code of 0 (zero).
- Programming data this message is sent as a reply to programming commands, or by request. It contains the new contents of the programmed block, which allows verification of the programming. This message has a message type code of 3 (three).
- **Logged Fragment of Forwarded Data** this message is sent when the terminal, connected to the serial port of Cellocator unit is forwarding data to the central control through unit's log. This message has a message type code of 7 (seven) and contains a fragment of delivered data.
- Real Time Forwarded Data this message is sent when the terminal, connected to the serial port of Cellocator unit is forwarding data to the central control without logging it. This message has a message type code of 8 (eight).
- Modular message this message is designed to contain different types of data, such as CAN bus sensors, Cell ID, debug data, and more. This message has a message type code of 9 (nine).
- Self Re-flash Master ACK / NACK message a message serving as confirmation of reception data chunk for self-re-flash. Self re-flash process description is outside the scope of this document (See Self Re-flash Appendix for more details).

# 2.2 Status/Location Message Definition

## 2.2.1 **Byte-Aligned Table**

| 1  | System code, byte 1 – ASCII "M"                                |  |  |  |  |
|----|----------------------------------------------------------------|--|--|--|--|
| 2  | System code, byte 2 – ASCII "C"                                |  |  |  |  |
| 3  | System code, byte 3 – ASCII "G"                                |  |  |  |  |
| 4  | System code, byte 4 – ASCII "P"                                |  |  |  |  |
| 5  | Message type - byte (a value of 0 for status/location message) |  |  |  |  |
| 6  | Unit's ID (total 32 bits)                                      |  |  |  |  |
| 7  |                                                                |  |  |  |  |
| 8  |                                                                |  |  |  |  |
| 9  |                                                                |  |  |  |  |
| 10 | Communication control field                                    |  |  |  |  |

Wireless Communication Protocol 31p

Page 9 of 113





| 11 |                                                                               |
|----|-------------------------------------------------------------------------------|
| 12 | Message numerator (Anti-Tango™)                                               |
| 13 | Unit's hardware version                                                       |
| 14 | Unit's software version                                                       |
| 15 | Protocol Version Identifier                                                   |
| 16 | Unit's status + Current GSM Operator (1st nibble)                             |
| 17 | Current GSM Operator (2nd and 3rd nibble)                                     |
| 18 | Transmission Reason Specific Data                                             |
| 19 | Transmission reason                                                           |
| 20 | Unit's mode of operation                                                      |
| 21 | Unit's I/O status 1st byte                                                    |
| 22 | Unit's I/O status 2nd byte                                                    |
| 23 | Unit's I/O status 3rd byte                                                    |
| 24 | Unit's I/O status 4th byte                                                    |
| 25 | Current GSM Operator (4th and 5th nibble)                                     |
| 26 | Analog input 1 value                                                          |
| 27 | Analog input 2 value                                                          |
| 28 | Analog input 3 value                                                          |
| 29 | Analog input 4 value                                                          |
| 30 | Mileage counter (total 24 bits)                                               |
| 31 |                                                                               |
| 32 |                                                                               |
| 33 | Multi-purpose field: Driver /Passenger/ Group ID, PSP/Keyboard Specific Data, |
| 34 | Accelerometer Status or SIM IMSI                                              |
| 35 |                                                                               |
| 36 |                                                                               |
| 37 |                                                                               |
| 38 |                                                                               |
| 39 | Last GPS Fix                                                                  |





| 40                   |                                      |  |  |  |  |  |
|----------------------|--------------------------------------|--|--|--|--|--|
| 41                   | Location status (from unit)          |  |  |  |  |  |
| 42 Mode 1 (from GPS) |                                      |  |  |  |  |  |
| 43                   | Mode 2 (from GPS)                    |  |  |  |  |  |
| 44                   | Number of satellites used (from GPS) |  |  |  |  |  |
| 45                   | Longitude                            |  |  |  |  |  |
| 46                   |                                      |  |  |  |  |  |
| 47                   |                                      |  |  |  |  |  |
| 48                   |                                      |  |  |  |  |  |
| 49                   | Latitude                             |  |  |  |  |  |
| 50                   |                                      |  |  |  |  |  |
| 51                   |                                      |  |  |  |  |  |
| 52                   |                                      |  |  |  |  |  |
| 53                   | Altitude                             |  |  |  |  |  |
| 54                   |                                      |  |  |  |  |  |
| 55                   |                                      |  |  |  |  |  |
| 54                   |                                      |  |  |  |  |  |
| 57                   | Ground speed                         |  |  |  |  |  |
| 58                   |                                      |  |  |  |  |  |
| 59                   |                                      |  |  |  |  |  |
| 60                   |                                      |  |  |  |  |  |
| 61                   | Speed direction (true course)        |  |  |  |  |  |
| 62                   |                                      |  |  |  |  |  |
| 63                   | UTC time – seconds                   |  |  |  |  |  |
| 64                   | UTC time – minutes                   |  |  |  |  |  |
| 65                   | UTC time – hours                     |  |  |  |  |  |
| 66                   | UTC date – day                       |  |  |  |  |  |
| 67                   | UTC date – month                     |  |  |  |  |  |
| 68                   | GPS date – year                      |  |  |  |  |  |





6970Error detection code - 8-bit additive checksum (excluding system code)

## 2.2.2 General Details

Rule of thumb: multiple byte fields are always sent Intel-style, meaning, least significant bytes sent first.

The first 9 bytes / 3 fields (system code, message type and unit ID) are always sent in the beginning of the message, in the specified order, regardless of the message kind. What differentiates the message kinds is the value sent in the message type field. The other fields maintain constant values (system code is a system-wide constant, unit ID is a unique constant value for each Cellocator unit).

# 2.2.3 Detailed Per-Field Specifications

#### 2.2.3.1 System Code

System code is a 4-byte value, which identifies the Cellocator system. The field is sent as the ASCII values of the letters "M", "C", "G", "P" (for IP messages) or "M", "C", "G", "S" (for SMS messages), in that order.

#### 2.2.3.2 Message Type

Message type identifies the kind of message. It allows the receiver to differentiate between status messages and programming data messages, according to the value sent in this field. Status/location messages contain a value of 0 (zero) in the message type field.

## 2.2.3.3 Unit ID

This field contains a value that is uniquely assigned for every Cellocator unit during the manufacturing process. All messages sent by the same Cellocator unit contain the same value in the Unit ID field.

## 2.2.3.4 Communication Control Field

This is a bitmapped field, which contains flags that provide information about the message and the situation in which it was originated. The field is currently defined to have only three flags (stored in bits 0, 1 and 2 – the least significant bits of the LSB byte of the field), which provides "message initiative", "non-distress message" and "tracking" information.

First byte (10<sup>th</sup>):

| ANCANBytes 33-38riginatedoriginatedassignmentodometer1Speed 2(Dallas, Trailer, PSP, | Message | Garmin    | Garmin  | Message    |
|-------------------------------------------------------------------------------------|---------|-----------|---------|------------|
|                                                                                     | source  | Connected | Enabled | Initiative |

<sup>1</sup> Only supported by Compact CAN unit, linked to J1939 (and, of course, FMS) CAN bus.

<sup>2</sup> Only supported by Compact CAN unit, linked to J1939 (and, of course, FMS) CAN bus.

Wireless Communication Protocol 31p





|       |       | ACC data or SIM IMSI) |       |       |       |       |       |
|-------|-------|-----------------------|-------|-------|-------|-------|-------|
| Bit 7 | Bit 6 | Bit 5                 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |

Second byte (11<sup>th</sup>):

| GSM<br>Hibernatio<br>n<br>indication<br>bit | Speed in<br>the<br>message:<br>Momentar<br>y / Max<br>Speed | "Business"<br>/ "Privet"<br>Mode | Firmware Sub-version * |       |       |       |       |
|---------------------------------------------|-------------------------------------------------------------|----------------------------------|------------------------|-------|-------|-------|-------|
| Bit 7                                       | Bit 6                                                       | Bit 5                            | Bit 4                  | Bit 3 | Bit 2 | Bit 1 | Bit 0 |

"Message initiative" flag states whether the message was "actively" sent (initiated by the unit, based on its logic and decisions), or if the message is a response to a command or a query message received by the unit earlier. The flag is low (contains logical "0") on standard "active" transmissions, and high (logical "1") on "passive" replies/responses.

A Cellocator Unit informs the Central Control about the status of Garmin terminal via the **"Garmin Enabled"** and **"Garmin Connected"** flags.

- The "Garmin Enabled" field monitors the status of the corresponding bit in the configuration memory (1 when enabled).
- The "Garmin Connected" bit monitors the status of the communication between Garmin and Cellocator Unit. This bit is set with the first correct ACK or NACK received from the Garmin Unit and is reset upon three missing responses from the Garmin unit (timeout expiration).

\* Refer to "API Garmin Support by Cellocator unit" for more details about Garmin integration.

The **"Message source"** flag indicates that the message was sent through memory. The unit tries to resend the message from the memory until the acknowledge, from the Control center, is received. The flag is low (contains logical "0") on direct messages <sup>3</sup>– not over memory, and high (logical "1") on messages from memory.

The **"Bytes 33-38 assignment (Dallas, PSP or other)**" bits define the data type, provided in bytes 33-38 of this message according to the below table. Value of this field does not affect *CelloTrack/Power*.

| Type 0, byte 10 |       | Description 4-5 of byte 10                                                   |
|-----------------|-------|------------------------------------------------------------------------------|
| Bit 5           | Bit 4 |                                                                              |
| 0               | 0     | Backward compatibility mode (to FW 27c and below), Driver ID (Dallas field). |

<sup>&</sup>lt;sup>3</sup> The only exception is the "Transmission Reason 32 - IP changed / connection up" message, which always requires acknowledge from central control, even if it was sent as a direct message and not through memory.

Wireless Communication Protocol 31p

Page 13 of 113





| 0 | 1 | PSP mode is enabled, external Alarm device data is transmitted in bytes 33-38 |
|---|---|-------------------------------------------------------------------------------|
| 1 | 0 | The Keyboard is used, keyboard related data is transmitted in bytes 33-38     |
| 1 | 1 | Trailer ID is transmitted in bytes 33-38                                      |

Bytes 33-38 will also contain the data of SIM's IMSI (only in "Wake Up" message, transmission reason 0d202), and a debug data of accelerometer (in all the messages from CelloTrack units).

#### Cello-AR

When the AR keypad is enabled in programming, the unit sets bits 4-5 of byte 10 of OTA Message type 0 to '10' in all the messages except Driver Authentication Update (TR46) and Wake Up (TR202).

**"CAN originated Speed"** and **"CAN originated Odometer":** These bits are set when the unit is configured to report (in message Type 0) speed and the odometer data taken from the CAN interface and not from the GPS. The flags are informative as the format of Speed and Odometer fields in message type zero remain the same, irrespective of the source of the data.

\* Only supported by Compact CAN unit, linked to J1939 (and, of course, FMS) CAN bus.

**Firmware Sub-Version:** This field (5 bits) defines the firmware sub-version of the Cellocator Unit. The number of Cellocator firmware is built from two parts:

[Firmware version][Firmware sub-version], where firmware version defines the list of supported features and subversion defines the revision.

For instance: 30':

| Firmware: 30   |  |
|----------------|--|
| Revision: '(0) |  |

| Firmware Sub-version field (decimal value) | Identifier    |
|--------------------------------------------|---------------|
| 0                                          | No identifier |
| 1                                          | а             |
| 2                                          | b             |
| 3                                          | c             |
| ~                                          | ~             |
| 26                                         | Z             |







**GSM hibernation indication bit:** The bit monitors hibernation status upon message delivery and not upon message generation. Consequently the bit is set to 1 only when the message is sent during GSM peeking

**Speed in the message:** The bit indicates whether the speed reported in this message is a Momentary speed (0) / or Maximal Speed recorded from the last event (1).

"Business" / "Privet" Mode: It is possible to enable usage of "Lock input"as a "Private"/"Business" mode toggle.

If enabled every time the Lock input is triggered the unit switches to the opposite mode ("Private"/"Business"/"Private").

The default mode is "Business".

The "Private" mode is finished upon:

- 1- The active ID is erased from RAM after journey end.
- 2- Lock Input trigger.

During "Private" mode the unit is continually set bit 5.

#### 2.2.3.5 Message Numerator (Anti-Tango<sup>™</sup>)

The Message numerator field contains a value that is increased after every self initiated generation of a message (in cases where an acknowledge from Central control was received).

\_\_\_\_\_

**NOTE:** The unit assigns different message numerator sequences for the logged events and for real-time events. In passive transmission (reply to command), the value in this field represents the number from the Command Numerator Field in an incoming command. (See Command Channel - Inbound Messages, Section 2.6.14).

-----

When the unit is reset/powered-up, this value is set to zero. This provides a way to chronologically sort incoming messages from a certain unit, in case an anachronistic communication medium is used.

#### 2.2.3.6 Unit's Hardware and Firmware Versions

These fields are aimed to define the numbers of a unit's hardware and firmware version.

The 8-bit "hardware version" field is split into 5 LSBits indicating main **hardware type**, and 3 MSBits indicating a **hardware variant**.

| Modem Type / Hardware<br>variant |       | Hardware type |       |       |       |       |       |
|----------------------------------|-------|---------------|-------|-------|-------|-------|-------|
| Bit 7                            | Bit 6 | Bit 5         | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |

The currently defined values for the main hardware type are:





| Value<br>(hex) | Hardware Type                      |
|----------------|------------------------------------|
| 3              | Olympic-03GM                       |
| 4              | Compact-01GR Fleet                 |
| 5              | Compact-01GR Security              |
| 6              | Compact-01GR Low Cost              |
| 7              | Compact-04CB Fleet/Can Bus         |
| 8              | Compact-01GR Security/RB           |
| 9              | 370-50 Security                    |
| А              | Compact-MR V1                      |
| В              | Compact EDR                        |
| С              | CelloTrack (no internal charger)   |
| D              | Compact Basic                      |
| 11             | Compact Can (25Mhz)                |
| 12             | CelloTrackCello                    |
| 13             | CelloTrackPowerCello               |
| 14             | Obsolete                           |
| 15             | Obsolete                           |
| 16             | EOB (Enfora On Board Compact unit) |
| 17             | CelloTrack with internal charger   |
| 18             | Cello Telit                        |
| 19             | Cello Cinterion                    |
| 1B             | Cello Telit enhanced memory        |
| 1C             | TOB (Telit On Board Compact unit)  |

In products with internal modems, the currently defined values for the hardware variants are:





| Value | Variant                                    |  |  |  |  |
|-------|--------------------------------------------|--|--|--|--|
| 0     | Sony/Erickson GR47                         |  |  |  |  |
| 1     | Enfora Enabler II-G                        |  |  |  |  |
| 2     | Telit GE864, old retrofit board (obsolete) |  |  |  |  |
| 3     | Telit GE864, mute support                  |  |  |  |  |
| 4     | Telit xE910 family                         |  |  |  |  |
| 5     | Enfora III                                 |  |  |  |  |
| 6     | Telit GE864, automotive                    |  |  |  |  |
| 7     | Cinterion BGS3                             |  |  |  |  |

In products with external modems (Olympic-03GM), the currently defined values for the hardware variants are:

| Value | Variant                   |
|-------|---------------------------|
| 0     | Generic GSM               |
| 1     | TETRA                     |
| 2     | Simple modem (ATD dialup) |

If the products are CelloTrackCello (18) or CelloTrackPowerCello (19) the current defined modem versions are:

| Modem Code | Modem Type  | Generatio | Standard            |
|------------|-------------|-----------|---------------------|
|            |             | n         |                     |
| 0          | Telit GE910 | 2G        | GSM/GPRS            |
| 1          | Telit CE910 | 2G        | CDMA                |
| 2          | Telit HE910 | 3G        | UMTS/HSPA+5.76/21.0 |
| 3          | Telit DE910 | 3G        | CDMA/1x EV-Do Rev.A |

## 2.2.3.7 Unit's Status and Current GSM Operator – 1st

This is a bitmapped field that provides information about current unit status and functionality.

**GPS comm.:** describes the status of communication with the GPS module (0=available, 1=not available/error).

**Home/Roam network:** describes in what GSM network the unit is currently registered: (0 – Home network, 1 – Roam network)

Wireless Communication Protocol 31p





**Correct Time:** confirms the validity of the timestamp in the message (correct – 0 or estimated/invalid -1)

**Source of Speed**: 0 – Estimated by GPS; 1 – Pulse frequency input.

| Current GSM Operator (PLMN), 1st nibble |       |       | Source Of<br>Speed | Correct<br>Time | Home/<br>Roam<br>network | GPS<br>Comm. |       |
|-----------------------------------------|-------|-------|--------------------|-----------------|--------------------------|--------------|-------|
| Bit 7                                   | Bit 6 | Bit 5 | Bit 4              | Bit 3           | Bit 2                    | Bit 1        | Bit 0 |

#### 2.2.3.8 Current GSM Operator Report

The current GSM Operator (PLMN) is represented as a 5 character hexadecimal number. After conversion into decimal it represents the MCC-MNC of a cellular operator (country code + network number). The 5 PLMN nibbles (nibble for each character) are provided in the following places:

- Byte 16 (4 MSbits, 1 nibble)
- Byte 17 (2 nibbles)
- Byte 25 (2 nibbles), 5<sup>th</sup> byte of IO

| Byte 16<br>(4MSbits,<br>1 nibble) | Byte 17  |          | Byte 25, 5th byte of IO |          |  |
|-----------------------------------|----------|----------|-------------------------|----------|--|
| Nibble 1                          | Nibble 2 | Nibble 3 | Nibble 4                | Nibble 5 |  |

# 2.2.3.9 Byte 17 - Current GSM Operator report (2<sup>nd</sup> and 3<sup>rd</sup>)

| Current GSM Operator (PLMN), 2 <sup>nd</sup> |       |       | Current GSM Operator (PLMN), 3 <sup>rd</sup> |       |       |       |       |
|----------------------------------------------|-------|-------|----------------------------------------------|-------|-------|-------|-------|
| nibble                                       |       |       | nibble                                       |       |       |       |       |
| Bit 7                                        | Bit 6 | Bit 5 | Bit 4                                        | Bit 3 | Bit 2 | Bit 1 | Bit 0 |

## 2.2.3.10 Transmission Reason Specific Data

The second byte (byte 18<sup>th</sup> of message 0) Related transmission reasons

| Transmission<br>Reason | Transmission Reason Specific Data Usage (As function of the Transmit reason) |                                                    |          |  |
|------------------------|------------------------------------------------------------------------------|----------------------------------------------------|----------|--|
| 8                      | 0                                                                            | Location change detected on Ignition is Off        |          |  |
| Towing                 | 1                                                                            | Towed mode start<br>Towed mode stop                |          |  |
|                        | 2                                                                            |                                                    |          |  |
| 14                     | Direction:<br>entry to                                                       | Exit from Garage reason:<br>0 - Manual mode change | Reserved |  |





| Transmission<br>Reason                                      | Transmiss<br>Transmit                                                      | sion Reason<br>reason)                                         | Specific Dat        | a Usage (As | function of the                                    |
|-------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------|---------------------|-------------|----------------------------------------------------|
| Garage Mode                                                 | Garage<br>Mode<br>("0")<br>exit from<br>Garage<br>Mode<br>("1")            | 1 – Timeou<br>2-3 - Reser                                      | t expiration<br>ved |             |                                                    |
|                                                             | Bit 7                                                                      | Bit 6                                                          |                     | Bit 5       | Bits 0 – 4                                         |
| 21<br>Coasting<br>detection<br>(Speed and<br>RPM)           | 0 – Stop<br>1 – Start                                                      |                                                                |                     |             |                                                    |
| 22                                                          | 0 Failing                                                                  |                                                                |                     |             |                                                    |
| violation of 1st<br>additional GP<br>frequency<br>threshold | 1                                                                          | Raising                                                        |                     |             |                                                    |
| 23                                                          | 0                                                                          | Failing                                                        |                     |             |                                                    |
| violation of 2nd<br>additional GP<br>frequency<br>threshold | 1                                                                          | Raising                                                        |                     |             |                                                    |
| 34                                                          | 0 – Plain                                                                  | 1                                                              |                     |             |                                                    |
| Over-speed<br>start                                         | 1 – Thresh                                                                 | old changed                                                    | by input            |             |                                                    |
| 42                                                          | 0 – Plain                                                                  |                                                                |                     |             |                                                    |
| Over-speed<br>end                                           | 1 – Threshold changed by input                                             |                                                                |                     |             |                                                    |
| 46                                                          | For Callo A                                                                | R unit only:                                                   |                     |             |                                                    |
| Driver ID<br>received                                       | 0 – Dri<br>1- Coc<br>For other u                                           | 0 – Driver ID<br>1- Code from SPC Keyboard<br>For other units: |                     |             |                                                    |
|                                                             | Group ID status<br>"1" – authenticated,<br>"0" – not<br>"1" – Passenger ID |                                                                |                     |             | User Type<br>"0" – Driver ID<br>"1" – Passenger ID |





| Transmission<br>Reason         | Transmission Reason Specific Data Usage (As function of the Transmit reason) |   |                                        |                                                                              |        |  |  |  |
|--------------------------------|------------------------------------------------------------------------------|---|----------------------------------------|------------------------------------------------------------------------------|--------|--|--|--|
|                                | authenticated                                                                |   |                                        |                                                                              |        |  |  |  |
|                                | Bit                                                                          | 7 |                                        | Bits 1-6                                                                     | Bit 0  |  |  |  |
| 69                             |                                                                              |   |                                        |                                                                              |        |  |  |  |
| Start Report                   |                                                                              |   |                                        |                                                                              |        |  |  |  |
|                                |                                                                              |   | Trans<br>functi                        | Transmission Reason Specific Data Usage (As function of the Transmit reason) |        |  |  |  |
|                                |                                                                              | 0 |                                        | Normal – Legacy s                                                            | upport |  |  |  |
|                                | 1                                                                            |   |                                        | Movement based start event<br>(Cellotrack only)                              |        |  |  |  |
| 91                             | Description                                                                  |   |                                        |                                                                              |        |  |  |  |
| Message from                   | 0                                                                            |   | Description                            |                                                                              |        |  |  |  |
| Keyboard (For<br>Cello AR unit |                                                                              |   | Keynad Undefined Failure               |                                                                              |        |  |  |  |
| only)                          |                                                                              |   | Immobilizer device wires disconnection |                                                                              |        |  |  |  |
|                                |                                                                              |   | Keypad locked                          |                                                                              |        |  |  |  |
|                                | 3                                                                            |   | Relay malfunction                      |                                                                              |        |  |  |  |
|                                | 4                                                                            |   | Ignition wire disconnected             |                                                                              |        |  |  |  |
|                                | 5                                                                            |   | Starter signal detection               |                                                                              |        |  |  |  |
|                                | 6                                                                            |   | Starter malfunction                    |                                                                              |        |  |  |  |
|                                | 7                                                                            |   | Hotwiring Detection*                   |                                                                              |        |  |  |  |
|                                | 8                                                                            |   | Primary cut unit failure               |                                                                              |        |  |  |  |
|                                | 9                                                                            |   | Secondary cut unit failure             |                                                                              |        |  |  |  |
|                                | 10                                                                           |   | Wrong keyboard ID detected             |                                                                              |        |  |  |  |
|                                | 11                                                                           |   | Pairing Accomplished                   |                                                                              |        |  |  |  |
|                                | 12                                                                           |   | Кеура                                  | ad flash failed                                                              |        |  |  |  |
|                                | 13                                                                           |   | Alarm                                  | Cadence Activated by Key                                                     | b      |  |  |  |
|                                | 14                                                                           |   | Alarm                                  | Cadence Deactivated by K                                                     | eyb    |  |  |  |
|                                | 128                                                                          |   | ECALL Initiated                        |                                                                              |        |  |  |  |

Page 20 of 113





| Transmission<br>Reason                                      | Transmissi<br>Transmit re                                                                             | Transmission Reason Specific Data Usage (As function of the Transmit reason)         |                                                                                                                                                                                                                                                                                 |                                                                     |                  |              |                     |                      |       |
|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------|--------------|---------------------|----------------------|-------|
|                                                             | 129                                                                                                   | 129 BCALL Initiated                                                                  |                                                                                                                                                                                                                                                                                 |                                                                     |                  |              |                     |                      |       |
| 191<br>Geo-Hotspot<br>violation                             | Direction:<br>entry to hot<br>spot ("1")<br>exit from ho<br>spot ("0")<br>The index of<br>the geo-zon | t<br>f<br>ne                                                                         | The index of the geo-zone.                                                                                                                                                                                                                                                      |                                                                     |                  |              |                     |                      |       |
|                                                             | Bit 7                                                                                                 | Bit                                                                                  | 5 Bit 5                                                                                                                                                                                                                                                                         | Bit 4                                                               | Bit              | 3            | Bit 2               | Bit 1                | Bit 0 |
|                                                             | Bits 0-6 mal<br>indicates dir                                                                         | ke up the<br>rection: e                                                              | index of the<br>ntry to hot s                                                                                                                                                                                                                                                   | e geo-zone.<br>pot ("1") o                                          | Most<br>r exit i | sigi<br>fron | nificant<br>n hot s | bit (bit<br>pot ("0" | 7)    |
| 192 -<br>Frequency<br>Measurement<br>Threshold<br>Violation | Violating<br>input<br>number<br>Door<br>Shock<br>Bit 7                                                | Violation<br>status<br>0 –<br>Violation<br>start<br>1 –<br>Violation<br>End<br>Bit 6 | tion violation type<br>0 -<br>tion Threshold<br>1 -<br>Range Violation direction<br><b>In case of Threshold</b><br>0 - Low thresh.<br>1 -High thresh.<br><b>In case of Threshold</b><br>0 - Low thresh.<br>1 -High thresh.<br><b>In case of range</b><br>0 -Keep In 1 - Keep Ou |                                                                     | F<br>F<br>Dut    | ut           |                     | Bit 0                |       |
|                                                             |                                                                                                       |                                                                                      |                                                                                                                                                                                                                                                                                 |                                                                     |                  | 3            |                     |                      |       |
| 194 - Analog<br>Measurement<br>Threshold<br>Violation       | Violating<br>input<br>number<br>Door<br>Shock                                                         | Violation<br>status<br>0 –<br>Violation<br>start<br>1 –<br>Violation<br>End          | Violation<br>type<br>0 –<br>Threshold<br>1 –<br>Range                                                                                                                                                                                                                           | Violation<br>direction<br>0 – High<br>thresh.<br>1 – Low<br>thresh. | Rese             | rve          | d<br>Bit 2          | D;+ 1                | Rit 0 |
| 100                                                         |                                                                                                       | BIE 6                                                                                | BIT 5                                                                                                                                                                                                                                                                           | BIT 4                                                               | Bit 3            |              | BIT 2               | BIT 1                | BIT U |
| 122                                                         | I railer Conn                                                                                         | nection St                                                                           | atus                                                                                                                                                                                                                                                                            | ailer conno                                                         | otod             |              |                     |                      |       |
|                                                             | o for trailer disconnected, 1 for trailer connected                                                   |                                                                                      |                                                                                                                                                                                                                                                                                 |                                                                     |                  |              |                     |                      |       |





| Transmission<br>Reason                                                                | Transmission Reason Specific Data Usage (As function of the Transmit reason)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                         |                         |                |           |                                                                                                                            |          |              |
|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------|----------------|-----------|----------------------------------------------------------------------------------------------------------------------------|----------|--------------|
| 200<br>AHR (Auto<br>Hardware<br>Reset)                                                | The AHR reason:The number of perf<br>attempts0 - Modem non responsivenessThe number of perf<br>attempts1 - Registration problemThe number of perf<br>attempts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                         |                         |                | performed | formed AHR                                                                                                                 |          |              |
|                                                                                       | Bit 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Bit 7         Bit 6         Bit 5         Bit 4         Bit 3         Bit 2         Bit 1         Bit 0 |                         |                |           |                                                                                                                            |          | Bit 0        |
| 205 Garmin<br>connection<br>status changed                                            | 0 – Garm<br>1 – Garm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | in Discon<br>in Connec                                                                                  | nected                  |                |           |                                                                                                                            |          |              |
| 206<br>Jamming<br>Detection                                                           | 0 – Jamm<br>1 – Jamm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ning Start<br>ning End c                                                                                | Detection<br>letection  | n<br>(not jamı | med)      |                                                                                                                            |          |              |
| 207 Radio Off<br>Mode                                                                 | For CelloTrack:         Not used       GPS       Modem         Status       Status       Status         0 - Off       0 - Off       0 - Off         Bit 7       Bit 6       Bit 5       Bit 4       Bit 3       Bit 2       Bit 1       Bit 0         For Cello:         2 - Detection of internal backup battery voltage lower than 3.5V (on any temperature) for longer than 1 second (100 samples) upon sole work from internal backup battery. The unit will switch off the radio 2 seconds after event generation. Once switched off, the modem will be switched back on only upon main power reconnection.         0 - Detection of internal backup battery voltage discharging to 3.25V for longer than 1 second (100 samples). The unit will enter shipment mode |                                                                                                         |                         |                |           | Modem<br>Status<br>0 – Off<br>1 - On<br>Bit 0<br>V (on any<br>work from<br>nds after<br>ed back on<br>3.25V for<br>nt mode |          |              |
| 212                                                                                   | The index                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | of the ge                                                                                               | eo-zone ir              | ndicating      | Speed lim | iting Ge                                                                                                                   | eo-Fence | start event. |
| 213                                                                                   | The index                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | of the ge                                                                                               | eo-zone ir              | ndicating      | Speed lim | iting Ge                                                                                                                   | eo-Fence | End event.   |
| 252<br>COM-Location<br>Glancing<br>(CelloTrack &<br>CelloTrack<br>Power Unit<br>only) | 0 – Plain<br>1- ST (Sp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | COM-Loca                                                                                                | ation Glar<br>he) COM-L | ocation (      | Glancing  |                                                                                                                            |          |              |
| 253                                                                                   | The index                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | of the a                                                                                                | o-zone.                 |                |           |                                                                                                                            |          |              |





| Transmission<br>Reason                | Transmission Reason Specific Data Usage (As function of the Transmit reason) |
|---------------------------------------|------------------------------------------------------------------------------|
| Violation of<br>Keep In Fence         |                                                                              |
| 254<br>Violation of<br>Keep Out Fence |                                                                              |
| 255<br>Violation of<br>Way Point      |                                                                              |

# 2.2.3.11 Transmission Reason

This field contains the reason why the unit is transmitting. Note that this value is valid only for self-initiated active transmissions (i.e. transmissions that the unit generated automatically because of its logics, in contrast to reply transmissions). Reply transmissions (i.e. transmissions where the message initiative flag is turned on) contain the last transmission reason that was used.

| Value | Reason                                                                                                  |    |  |  |  |
|-------|---------------------------------------------------------------------------------------------------------|----|--|--|--|
| 4     | Emergency (Distress) mode by command                                                                    |    |  |  |  |
| 5     | Door Opened (Security Event)                                                                            |    |  |  |  |
| 6     | Engine Activated (Security Even                                                                         | t) |  |  |  |
| 7     | GPS Disconnected                                                                                        |    |  |  |  |
| 8     | Location change detected on<br>Ignition is OffSee TR specific data section 2.2.3.10 for<br>more details |    |  |  |  |
| 11    | Communication Idle                                                                                      |    |  |  |  |
| 12    | Disarmed from emergency states                                                                          |    |  |  |  |
| 13    | Keypad Locked (wrong codes punched in)                                                                  |    |  |  |  |
| 14    | Garage Mode (see Transmission Reason Specific Data (section 2.2.3.10)).                                 |    |  |  |  |
| 19    | Alarm Triggered by "Lock" input                                                                         |    |  |  |  |
| 21    | Coasting detection (Speed and RPM)                                                                      |    |  |  |  |
| 22    | Violation of 1st additional GP frequency threshold                                                      |    |  |  |  |
| 23    | Violation of 2nd additional GP frequency threshold                                                      |    |  |  |  |
| 25    | Speed detected when Ignition is Off                                                                     |    |  |  |  |
| 27    | GPS connected                                                                                           |    |  |  |  |
| 31    | Reply to Command                                                                                        |    |  |  |  |





| Value           | Reason                                                    |
|-----------------|-----------------------------------------------------------|
| 32 <sup>4</sup> | IP changed / connection up                                |
| 33              | GPS Navigation Start                                      |
| 34              | Over-speed Start                                          |
| 35              | Idle Speed Start                                          |
| 36              | Distance                                                  |
| 37              | Engine Start; Ignition Input – active (high)              |
| 38              | GPS Factory Reset (Automatic only)                        |
| 40              | IP Down                                                   |
| 41              | GPS Navigation End                                        |
| 42              | End of Over-speed                                         |
| 43              | End of Idle Speed                                         |
| 44              | Timed Event                                               |
| 45              | Engine Stop; Ignition Input – inactive (low)              |
| 46              | Driver Authentication Update / Code received for Cello-AR |
| 47              | Driving Without Authentication                            |
| 48              | Door Close Event                                          |
| 49              | Unlock2 / Shock Inactive Event                            |
|                 | CelloTrack: GP1 Inactive Event                            |
| 50              | Hood Sensor Inactive Event                                |
|                 | CelloTrack: GP2 Inactive Event                            |
| 51              | Volume Sensor Inactive Event                              |
| 52              | Hotwire Sensor Inactive Event                             |
| 53              | Driving Stop Event                                        |
| 54              | Distress Button Inactive Event                            |
| 55              | Unlock Input Inactive event                               |
| 56              | Oil Pressure Sensor Inactive Event                        |

<sup>4</sup> Always requires acknowledge from central control, even if it was sent as a direct message and not through memory.





| Value | Reason                                                                   |
|-------|--------------------------------------------------------------------------|
| 57    | CFE input 1 inactive (Infrustructure)                                    |
| 58    | Lock input inactive event                                                |
| 59    | CFE input 2 inactive (Infrustructure)                                    |
| 60    | CFE input 3 inactive(Infrustructure)                                     |
| 61    | CFE input 4 inactive(Infrustructure)                                     |
| 62    | CFE input 5 inactive(Infrustructure)                                     |
| 63    | CFE input 6 inactive(Infrustructure)                                     |
| 64    | Door Open Event                                                          |
| 65    | Unlock2 / Shock Active Event                                             |
|       | CelloTrack: GP1 Active Event                                             |
| 66    | Hood Sensor Active Event                                                 |
|       | CelloTrack: GP2 Active Event                                             |
| 67    | Volume Sensor Active Event                                               |
| 68    | Hotwire Sensor Active Event (370-50)                                     |
| 69    | Driving Start Event                                                      |
| 70    | Distress Button Active Event                                             |
| 71    | Unlock Input Active Event                                                |
| 72    | Oil Pressure Sensor Active Event                                         |
| 73    | CFE input 1 active Event (Infrustructure)                                |
| 74    | Lock input active event                                                  |
| 75    | CFE input 2 active Event (Infrustructure)                                |
| 76    | CFE input 3 active Event (Infrustructure)                                |
| 77    | CFE input 4 active Event (Infrustructure)                                |
| 78    | CFE input 5 active Event (Infrustructure)                                |
| 79    | CFE input 6 active Event (Infrustructure)                                |
| 80    | Main Power Disconnected                                                  |
| 81    | Main Power Low Level                                                     |
| 82    | Backup Battery Disconnected<br>Cellotrack3G: Charging Power Disconnected |





| Value | Reason                                                                                                      |                         |                                               |  |  |  |
|-------|-------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------------------------------|--|--|--|
| 83    | Backup Battery Low Level                                                                                    |                         |                                               |  |  |  |
| 84    | Halt (movement end) event                                                                                   |                         |                                               |  |  |  |
| 85    | Go (movement start) event                                                                                   |                         |                                               |  |  |  |
| 87    | Main Power Connected (be uncond                                                                             | itionally logged u      | pon an initial power up)                      |  |  |  |
| 88    | Main Power High Level                                                                                       |                         |                                               |  |  |  |
| 89    | Backup Battery Connected<br>Cellotrack3G Power: Charging Pow                                                | er Connected            |                                               |  |  |  |
| 90    | Backup Battery High Level                                                                                   |                         |                                               |  |  |  |
| 91    | Message from SPC Keyboard Supported by CelloAR system o<br>TR specific data section 2.2.3.1<br>more details |                         |                                               |  |  |  |
| 99    | Harsh Braking Sensor Triggered                                                                              |                         |                                               |  |  |  |
| 100   | Sudden Course Change Sensor Triggered                                                                       |                         |                                               |  |  |  |
| 101   | Harsh Acceleration Sensor Triggered                                                                         |                         |                                               |  |  |  |
| 104   | Trigger on General Input                                                                                    |                         |                                               |  |  |  |
| 105   | Arm Input triggered                                                                                         |                         | _                                             |  |  |  |
| 106   | Disarm Input triggered                                                                                      |                         | -                                             |  |  |  |
| 107   | Remote Controller input trigger                                                                             |                         | -                                             |  |  |  |
| 108   | Odometer pulse received                                                                                     |                         | -                                             |  |  |  |
| 109   | Unlock Pulse trigger                                                                                        |                         | _                                             |  |  |  |
| 110   | Lock Pulse trigger                                                                                          |                         | _                                             |  |  |  |
| 111   | Triggers on Blinkers                                                                                        |                         | _                                             |  |  |  |
| 112   | One of the protected outputs failur                                                                         | e                       | Applicable only for<br>Security Modifications |  |  |  |
| 144   | Reset while armed                                                                                           |                         |                                               |  |  |  |
| 145   | Wireless Panic button (for RB modi                                                                          | fication only)          | _                                             |  |  |  |
| 150   | Signal Learned                                                                                              |                         |                                               |  |  |  |
| 151   | Learning Failed                                                                                             |                         |                                               |  |  |  |
| 152   | Received Signal A                                                                                           |                         |                                               |  |  |  |
| 153   | Received Signal B                                                                                           |                         | ]                                             |  |  |  |
| 154   | Car sharing: This TR will be sent w<br>detects main power low or disconn<br>hibernation mode "D" starts     | hen the unit<br>ect and |                                               |  |  |  |





| Value | Reason                                           |                                                                                                                                                                              |  |  |  |  |
|-------|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 158   | Tamper switch Active Event (For CelloTrack only) |                                                                                                                                                                              |  |  |  |  |
| 159   | Tamper switch Inactive Event (For                | CelloTrack only)                                                                                                                                                             |  |  |  |  |
| 161   | "Unlock" input triggered                         |                                                                                                                                                                              |  |  |  |  |
| 162   | MODECON gas leak start event                     |                                                                                                                                                                              |  |  |  |  |
| 163   | MODECON gas leak stop event                      |                                                                                                                                                                              |  |  |  |  |
| 190   | No Modem Zone entry                              |                                                                                                                                                                              |  |  |  |  |
| 191   | Geo-HOT Spot violation                           | See Transmission Reason Specific Data                                                                                                                                        |  |  |  |  |
| 192   | Frequency Measurement<br>Threshold Violation     | (section 2.2.3.10) for more details.                                                                                                                                         |  |  |  |  |
| 194   | Analog Measurement Threshold<br>Violation        |                                                                                                                                                                              |  |  |  |  |
| 199   | Trailer Connection Status                        |                                                                                                                                                                              |  |  |  |  |
| 200   | Modem's Auto Hardware Reset<br>(AHR)             |                                                                                                                                                                              |  |  |  |  |
| 201   | PSP – External Alarm is<br>Triggered             | Only for Fleet edition while PSP is<br>enabled. Refer to bytes 33-38 for<br>specific reason of the trigger.                                                                  |  |  |  |  |
| 202   | Wake Up event                                    | If enabled in the EEPROM, it is sent<br>after Hardware Reset (including AHR)<br>even when active transmissions are<br>disabled. Includes IMSI of SIM card in<br>bytes 33-38. |  |  |  |  |
| 203   | Pre-Hibernation event                            | If enabled, generated 15 seconds<br>before an expiration of Hibernation<br>Mode Delay timeout.                                                                               |  |  |  |  |
| 204   | Vector (course) change                           | Curve smoothing event                                                                                                                                                        |  |  |  |  |
| 205   | Garmin connection status changed                 | See Transmission Reason Specific Data (section 2.2.3.10) for more details.                                                                                                   |  |  |  |  |
| 206   | Jamming detection                                |                                                                                                                                                                              |  |  |  |  |
| 207   | Radio Off Mode                                   |                                                                                                                                                                              |  |  |  |  |
| 208   | Header Error                                     |                                                                                                                                                                              |  |  |  |  |
| 209   | Script Version Error                             | Self Re-flash Processing.                                                                                                                                                    |  |  |  |  |
| 210   | Unsupported Command                              |                                                                                                                                                                              |  |  |  |  |





| Value | Reason                                                                                                                                                    |  |  |  |  |  |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 211   | Bad Parameters                                                                                                                                            |  |  |  |  |  |
| 212   | Speed limiting Geo-Fence.<br>GeoFence over Speed <b>Start</b> Event. See <u>Transmission Reason Specific Data</u><br>for more details (Section 2.2.3.10). |  |  |  |  |  |
| 213   | Speed limiting Geo-Fence.<br>GeoFence over Speed <b>End</b> Event. See <u>Transmission Reason Specific Data</u><br>for more details (Section 2.2.3.10).   |  |  |  |  |  |
| 232   | External EEPROM Error                                                                                                                                     |  |  |  |  |  |
| 239   | Max Error                                                                                                                                                 |  |  |  |  |  |
| 245   | Upload Mode                                                                                                                                               |  |  |  |  |  |
| 246   | Execute Mode                                                                                                                                              |  |  |  |  |  |
| 247   | Finish Mode                                                                                                                                               |  |  |  |  |  |
| 248   | Post Boot Mode                                                                                                                                            |  |  |  |  |  |
| 252   | COM-Location Glancing (CelloTrack Unit only)                                                                                                              |  |  |  |  |  |
| 253   | Violation of Keep In Fence. See Transmission Reason Specific Data (section 2.2.3.10) for more details.                                                    |  |  |  |  |  |
| 254   | Violation of Keep Out Fence. See Transmission Reason Specific Data (section 2.2.3.10) for more details.                                                   |  |  |  |  |  |
| 255   | Violation of Way Point. See Transmission Reason Specific Data (section 2.2.3.10) for more details.                                                        |  |  |  |  |  |

# 2.2.3.12 Unit's Mode of Operation

The functioning of the Cellocator unit can be generalized as a finite state machine model, with a few "stages" of operation. The "current stage" is referred to as "unit mode", or "mode of operation". Every possible stage is assigned a certain value, which is transmitted in this field:

| Value | Meaning                                     |
|-------|---------------------------------------------|
| 0x00  | Standby Engine On                           |
| 0x01  | Standby Engine Off                          |
| 0x02  | Passive Arming (For Security modifications) |
| 0x03  | Pre-Arming (For Security modifications)     |
| 0x04  | Alarm Armed (For Security modifications)    |





| Value | Meaning                                                                                      |
|-------|----------------------------------------------------------------------------------------------|
| 0x05  | Silent Delay (For Security modifications)                                                    |
| 0x07  | Alarm Triggered (For Security modifications)                                                 |
| 0x0E  | Garage Mode                                                                                  |
| 0x0F  | Transmissions Delay (for older versions FW25 and below)                                      |
| 0x10  | Towed mode (same as Standby Engine On, except the fact that the ignition switch remains off) |

# 2.2.3.13 Unit's I/Os Status

The Cellocator unit is provided with many I/Os (inputs/outputs). Each I/O may be "high" or "low" at a given moment. The I/O status field is a bitmapped representation of all of the I/Os levels.





| GP Input<br>♥<br>Unlock<br>(11/20)<br>♥ | Panic<br>🛧 🛧 ¥ 🕇 🗖 | Driving<br>Status<br>(Ignition or<br>accelerome<br>ter based)<br>Ignition<br>• • • •<br>Movement<br>Sensor<br>• • | CFE In 1<br>(Infrustruc<br>ture) | Volume<br>GP1 Input2<br>• | Hood<br>♥<br>GP1 Input1<br>•♦ | Shock /<br>Unlock 2<br>(15/20) | Door  |
|-----------------------------------------|--------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------|---------------------------|-------------------------------|--------------------------------|-------|
| Bit 7                                   | Bit 6              | Bit 5                                                                                                             | Bit 4                            | Bit 3                     | Bit 2                         | Bit 1                          | Bit 0 |

#### First 2 bytes byte of I/O status field (sensors inputs):

#### Second byte:

| Ignition port status | Accelero<br>meter<br>status | External<br>Alarm<br>Status<br>CFE IN 6<br>(Infrustr<br>ucture) | External<br>Alarm<br>Trigger<br>•<br>CFE IN 5<br>(Infrustruc<br>ture) | Odometer<br>•<br>CFE IN 4<br>(Infrustru<br>cture) | RC data<br>♥<br>Lock<br>(5/20) | Disarm  V IN 3 (Infrustru cture) | Arm<br>•<br>CFE IN 2<br>(Infrustru<br>cture) |
|----------------------|-----------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------|--------------------------------|----------------------------------|----------------------------------------------|
| Bit 7                | Bit 6                       | Bit 5                                                           | Bit 4                                                                 | Bit 3                                             | Bit 2                          | Bit 1                            | Bit 0                                        |

#### Legend:

| <ul> <li>Compact Fleet (4 inputs variants)</li> </ul> | <ul> <li>▲ - Compact Security (and 6 inputs fleet,<br/>TOB and EOB)</li> </ul> |  |  |  |  |  |  |
|-------------------------------------------------------|--------------------------------------------------------------------------------|--|--|--|--|--|--|
| <b>v</b> - 370-50                                     | + - Olympic                                                                    |  |  |  |  |  |  |
| <ul> <li>– CelloTrack/Cellotrack Power</li> </ul>     | Cello                                                                          |  |  |  |  |  |  |
| ◊ – CelloTrack Output                                 |                                                                                |  |  |  |  |  |  |

#### Third byte of I/O status field (Compact and Cello)

| CFE OUT              | CFE OUT              | CFE OUT              | CFE OUT              | GPS                  | Grad. | Siren   | CFE OUT                          |
|----------------------|----------------------|----------------------|----------------------|----------------------|-------|---------|----------------------------------|
| 5                    | 4                    | 3                    | 2                    | power                | Stop  | Control |                                  |
| (Infrustru<br>cture) | (Infrustru<br>cture) | (Infrustru<br>cture) | (Infrustru<br>cture) | (Infrustru<br>cture) |       |         | <b>1</b><br>(Infrustru<br>cture) |





| Bit 7 | Bit 6 | Bit 5 | Bit 1 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
|       |       |       |       |       |       |       |       |
|       |       |       |       |       |       |       |       |

#### Fourth byte of I/O status field (Compact and Cello)

| Charger<br>status:<br>0 - not<br>charging<br>1-<br>charging | <b>CFE OUT</b><br><b>6</b><br>(Infrustr<br>ucture) | Standard<br>Immobilizer | Unused | Blinkers<br>(Global<br>output) /<br>CelloTrack<br>Output | Unused |       | LED out |
|-------------------------------------------------------------|----------------------------------------------------|-------------------------|--------|----------------------------------------------------------|--------|-------|---------|
| Bit 7                                                       | Bit 6                                              | Bit 5                   | Bit 4  | Bit 3                                                    | Bit 2  | Bit 1 | Bit 0   |

#### Third byte of I/O status field (370-50 only)

| GSM Wake | Sensors<br>Voltage | General<br>Output | Hood Lock | GPS Power | PWM<br>Immob. | Siren Out | Modem<br>DTR out |
|----------|--------------------|-------------------|-----------|-----------|---------------|-----------|------------------|
| Bit 7    | Bit 6              | Bit 5             | Bit 4     | Bit 3     | Bit 2         | Bit 1     | Bit 0            |

#### Fourth byte of I/O status field (370-50 only)

| Hands-free<br>Control | Unlock Out | Unused | Door Lock<br>Out | Blinkers<br>Out | Buzzer Out | Stop Lights<br>Out | LED out |
|-----------------------|------------|--------|------------------|-----------------|------------|--------------------|---------|
| Bit 7                 | Bit 6      | Bit 5  | Bit 4            | Bit 3           | Bit 2      | Bit 1              | Bit 0   |

# 2.2.3.14 Byte 25: Current GSM Operator (4th and 5th)

| Current GSM Operator (PLMN), 4th nibble |       |       |       | Current GSM Operator (PLMN), 5th nibble |       |       |       |
|-----------------------------------------|-------|-------|-------|-----------------------------------------|-------|-------|-------|
| Bit 7                                   | Bit 6 | Bit 5 | Bit 4 | Bit 3                                   | Bit 2 | Bit 1 | Bit 0 |

## 2.2.3.15 Analog Inputs

The Cellocator unit may handle up to 4 discrete analog inputs. These inputs are multiplexed and sampled with a 10-bit deep analog/digital converter (in Cello 14 bits). 2 (or, in case of Cello - 6) bits of the conversion results are stripped, according to the input, and the result for each channel is sent in this field.

In all the Cellocator units except Cello the allocation of the measurements is fixed in the message as follows:

#### In all units except Cello

The first byte in the field represents the main supply voltage. The main supply voltage is continuously monitored, and this field represents the current updated measured voltage.

This value should be multiplied by the following number to get a value in Volts:

• Compact: 0.1217320

Wireless Communication Protocol 31p

Page 31 of 113







- CelloTrack: 0.01953125<sup>5</sup>
- 370-50: 0.1212565

The second byte in the field represents backup battery voltage, when it was last tested. Unlike the main supply voltage, this input is not constantly monitored. It is tested only when the backup battery is not being charged: in Standby Engine Off mode. If "Low Backup battery" event was not previously detected the unit constantly charges Backup battery during Standby Engine On.

This value should be multiplied by the following number to get a value in Volts:

- Compact:0.0474599
- 370-50: 0.0472745
- CelloTrack not used

The third byte monitors either the Main Power regulated voltage (backward compatibility) or the 2nd Analog input (on pin 14), as per setting in EEPROM (byte 465, bit 2). This byte is not used in CelloTrack and CelloTrack Power.

If set as Main Power regulated voltage, it monitors an internal voltage of the unit, used mainly for debugging reasons. It should be multiplied by 0.01953125 to get the voltage in Volts.

If set as a second analog input – it monitors a voltage measured on pin 14 of the interface connector, if measurement is enabled in the EEPROM. (Refer to the Programming Manual document, Events masking section – Analog Input Measurement Mask, 2nd Analog input). The measured signal is between 0 and 2.5 Volts, resolution of 9.8mV.

The source of the 3rd byte of analog inputs measurement (regulated voltage or second analog input) is monitored in bit 0 of byte 41. Please refer to Section 2.2.3.19.

The fourth byte <sup>6</sup>represents voltage on the first optional analog input (pin 15) in the event that measuring is enabled in the EEPROM (Refer to the Programming Manual Document, Events masking section, Analog Input Measurement Mask, Optional Analog input). The Measured signal is between 0 and 2.5 Volts, resolution of 9.8mV.

This byte is not used in CelloTrack, but in CelloTrack Power it is monitoring the temperature of the battery as 2's compliment hexadecimal value. Effective measurement range from -20°C to 55°C, measurement error  $\pm 1.5$ °C

#### In Cello units

In all the Cellocator units except Cello the allocation of the measurements in the message is NOT fixed and controlled in programming:

| Field Name | Default value | Byte number in<br>OTA Message type |
|------------|---------------|------------------------------------|
|            |               | U                                  |

<sup>5</sup> For CelloTrack the Main Power field contains a Li-Polymer internal battery measurement.

 $^6$  For CelloTrack Power it is monitoring the temperature of the battery as 2's compliment hexadecimal value. Effective measurement range from -20°C to 55°C, measurement error  $\pm 1.5^\circ$ C





| Measurement 1 | 9 (Vin)      | 26 |
|---------------|--------------|----|
| Measurement 2 | 6 (Vbat)     | 27 |
| Measurement 3 | 7 (Bat. NTC) | 28 |
| Measurement 4 | 2 (Shock)    | 29 |

#### Available inputs for mapping

| Measurement<br>source number | Input source<br>Name | Coefficient<br>(for discrete<br>and analog<br>inputs only)                                                                                          | Remark                                                                                                                                             |
|------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| 0                            | No source            | -                                                                                                                                                   | The application<br>shall ignore the<br>value of the<br>corresponding byte<br>in the message as<br>it might include<br>random data.                 |
| 1                            | Door <sup>7</sup>    | 1.0                                                                                                                                                 | Can report either                                                                                                                                  |
| 2                            | Shock                | 1.0                                                                                                                                                 | analog (either in<br>9.8mA or 117.6mA<br>resolution, as per<br>programming) or<br>frequency<br>measurement as<br>per corresponding<br>input's type |
| 3                            | Panic                | -                                                                                                                                                   | Infrastructure                                                                                                                                     |
| 4                            | Unlock               |                                                                                                                                                     | only, not currently                                                                                                                                |
| 5                            | Lock                 |                                                                                                                                                     | supported                                                                                                                                          |
| 6                            | V bat                | 0.01647058823                                                                                                                                       | Battery voltage                                                                                                                                    |
| 7                            | Bat. NTC             | Temperature<br>conversion<br>formula:<br>$t^{\circ}C=0.4314x-40;$<br>$0 \le x \le 255$<br>$(-40^{\circ}C \le t \le 70^{\circ}C)$<br>(where x is the | The NTC received<br>value<br>Note that the<br>accuracy of the<br>measurement is<br>±3°C                                                            |
| 0                            | N/ ·                 | measurement                                                                                                                                         |                                                                                                                                                    |
| 8                            | V main               | 0.01/64/0588235                                                                                                                                     | Regulated voltage                                                                                                                                  |
| 9                            | v in                 | 0.11/64/0588235                                                                                                                                     | Input voltage                                                                                                                                      |

#### In CelloTrack3G

In Cellotrack3G like in Cello the analog measurements sources are programmable. The default sources are described in the following table:

<sup>&</sup>lt;sup>7</sup> The analog inputs measurement resolution is variable (either in 9.8mA or 117.6mA resolution), and controlled by programmable parameter





| Field Name    | Default value       | Byte number in OTA<br>Message type 0 |
|---------------|---------------------|--------------------------------------|
| Measurement 1 | 6 (Battery Voltage) | 26                                   |
| Measurement 2 | 8 (Vmain Voltage)   | 27                                   |
| Measurement 3 | 1 (GPIO1)           | 28                                   |
| Measurement 4 | 7 (NTC)             | 29                                   |

#### Available inputs for mapping

| Measurement<br>source number | Input source<br>Name | Coefficient<br>(for discrete and<br>analog inputs<br>only)                                                                                                         | Remark                                                                                                                             |
|------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| 0                            | No source            | -                                                                                                                                                                  | The application<br>shall ignore the<br>value of the<br>corresponding byte<br>in the message as<br>it might include<br>random data. |
| 1                            | GPIO1                | 0-2.5V: 0.0078125<br>0-30: 0.117647058                                                                                                                             | Can report either analog (either in                                                                                                |
| 2                            | GPIO2                | 0-2.5V: 0.0078125<br>0-30: 0.117647058                                                                                                                             | 9.8mA or 117.6mA<br>resolution, as per<br>programming) or<br>frequency<br>measurement as<br>per corresponding<br>input's type      |
| 3                            | No source            |                                                                                                                                                                    | Infrastructure                                                                                                                     |
| 4                            | No source            |                                                                                                                                                                    | only, not currently                                                                                                                |
| 5                            | No source            |                                                                                                                                                                    | supported                                                                                                                          |
| 6                            | Battery Voltage      | 0.01647058823                                                                                                                                                      | Battery voltage                                                                                                                    |
|                              | Bat. NIC             | Temperature<br>conversion<br>formula:<br>$t^{\circ}C=0.4314x-40;$<br>$0 \le x \le 255$<br>$(-40^{\circ}C \le t \le 70^{\circ}C)$<br>(where x is the<br>measurement | Note that the<br>accuracy of the<br>measurement is<br>±3°C                                                                         |
| 8                            | Vmain Voltage        | 0.0176470588235                                                                                                                                                    | Regulated voltage                                                                                                                  |

# 2.2.3.16 Mileage Counter

The Cellocator unit is provided with a distance accumulator feature. The unit counts "distance base units" programmed in the EEPROM.

Wireless Communication Protocol 31p





By synchronizing the accumulator value with the vehicle's odometer reading and setting the "distance base units" to one kilometer/mile, this counter provides the ability to remotely "read" the vehicle's odometer. The programming and synchronizing is only needed once – during the installation.

The mileage counter field contains the current 24-bit value of this accumulator.

## 2.2.3.17 Multi-purpose field on bytes 33-38

The bytes 33-38 may carry different information as per bits 4 and 5 in Communication Control byte (10): Driver ID/Code update/PSP Data/Acc. Status/IMSI/Trailer ID

#### Driver ID / Passenger ID/ Group ID Code Update

If bits 4 and 5 of the Communication Control LSByte are both 0.

Every Cellocator unit (except CelloTrack and CelloAR) can provide 6 bytes of last received Dallas button in every message if that feature is enabled in EEPROM (Mask of Authentication Events).

If no Dallas code is received since the initiation of the last Start Event, this field includes 0.

The code can carry Driver ID or Passenger ID and Group ID, depends on the type of the attached button and the configuration.

#### **Group ID**

The Group ID is an additional driver authentication method, used when there are too many drivers to be programmed into unit's memory.

The length of Group ID varies from 1 to 9 bytes length but shorter than 10 digits. The unit supports multiple groups, while all Group IDs are from the same length.

Note: Group ID number shall never begin from zero.

The first number in Dallas codes array, shorter than 10 digits is considered as group ID and his length is considered length of group ID. Any additional number, shorter than 10 digits but with length different from the first Group ID length, is considered a driver id.

Example: Dallas code 1234567890, when group ID is 4 digits

| Driver/Passenger ID 567890 |         |         | Group ID 1234 |         |         |
|----------------------------|---------|---------|---------------|---------|---------|
| 90                         | 78      | 56      | 34            | 12      | 00      |
| Byte 33                    | Byte 34 | Byte 35 | Byte 36       | Byte 37 | Byte 38 |





#### The Keyboard

In case of CelloAR this field is used to report the code received by The Keyboard (when bits 4 and 5 of the Communication Control LSByte are both 0).

The message from CelloAR contains the received code and recognition status as it received from the keyboard.

| Code<br>Recognitio<br>n Status | Spare   | Received Code (32 bits) |         |         |         |  |
|--------------------------------|---------|-------------------------|---------|---------|---------|--|
| Byte 38                        | Byte 37 | Byte 36                 | Byte 35 | Byte 34 | Byte 33 |  |

#### Code Recognition Status (Byte 38)

| Reserved | Immobiliz<br>er Status<br>0 - off<br>1- on | Ignition<br>Status<br>0 - off<br>1- on | Authentic<br>ation<br>(multi-<br>code)<br>Code<br>status<br>0- OK<br>1- Wrong | Code<br>status<br>0- OK<br>1- Wrong | Code type<br>0- Stan<br>1- Auth<br>2- C&L<br>3- 7 - r | ndard<br>nentication<br>reserved |       |
|----------|--------------------------------------------|----------------------------------------|-------------------------------------------------------------------------------|-------------------------------------|-------------------------------------------------------|----------------------------------|-------|
| Bit 7    | Bit 6                                      | Bit 5                                  | Bit 4                                                                         | Bit 3                               | Bit 2                                                 | Bit 1                            | Bit 0 |

#### Received Code (Bytes 33-36)

| Master code, only in case of reply to access code request, otherwise sent as zeros |                                      |                                      | LSB char<br>of the<br>code       | 3rd char<br>of the<br>code | 2nd char<br>of the<br>code | MSB<br>char of<br>the code |          |
|------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------|----------------------------------|----------------------------|----------------------------|----------------------------|----------|
| LSB char<br>of<br>Master<br>code                                                   | 3rd char<br>of the<br>Master<br>code | 2nd char<br>of the<br>Master<br>code | MSB<br>char of<br>Master<br>code |                            |                            |                            |          |
| Nibble 8                                                                           | Nibble 7                             | Nibble 6                             | Nibble 5                         | Nibble 4                   | Nibble 3                   | Nibble 2                   | Nibble 1 |
| 7th byte of<br>response6th byte of<br>response                                     |                                      | 5th byte or response                 | of                               | 4th byte o<br>response     | f                          |                            |          |

**PSP** – External Alarm status (If bits 4 and 5 of Communication Control LSByte = 01)




| Reserved     |         |         | Latest Valid<br>Status<br>(Refer to an<br>for statuses | est Valid External Alarm<br>tus<br>fer to an external alarm protocol<br>statuses list) |          |  |  |  |
|--------------|---------|---------|--------------------------------------------------------|----------------------------------------------------------------------------------------|----------|--|--|--|
| Nibbles 6-11 | L       |         | Nibbles 1-5                                            |                                                                                        | Nibble 0 |  |  |  |
| Byte 38      | Byte 37 | Byte 36 | Byte 35                                                | Byte 34                                                                                | Byte 33  |  |  |  |

#### Keyboard status (If bits 4 and 5 of Communication Control LSByte = 10)

| Reserved     |         |         | Latest Valid H<br>(Refer to an ext<br>for statuses list | Com.<br>Status |          |  |
|--------------|---------|---------|---------------------------------------------------------|----------------|----------|--|
| Nibbles 6-11 | _       |         | Nibbles 1-5                                             |                | Nibble 0 |  |
| Byte 38      | Byte 37 | Byte 36 | Byte 35                                                 | Byte 34        | Byte 33  |  |

#### Com. Status Table

| Value | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0     | The Keyboard status in following 5 nibbles                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1     | <ul> <li>If Pairing is enabled (Address 1710 bit 5)</li> <li>The unit will send OTA event/distress message type 0 with TR 201, STR 0. The Com. Status in byte 33 of OTA Msg type 0 will contain 1 (Communication Loss or pairing Failed).</li> <li>If pairing is disabled (Address 1710 bit 5):</li> <li>The unit will send OTA event/distress message type 0 with TR 201, STR</li> <li>0. The Com. Status in byte 33 of OTA Msg type 0 will contain 1 (Communication Loss or Date 10, STR).</li> </ul> |
| 2-15  | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

#### Latest Valid Keyboard Status

The value of the following bits is updated every time when:

- 1) The code is received.
- 2) Operational mode changed.
- 3) Ignition Change detected.

Wireless Communication Protocol 31p

Page 37 of 113





| D19                    | D18 | D17 | D16 | D15 | D14                    | D13     | D12 | D11 | D10 | D9          | D8 | D7 | D6                       | D5 | D4 | D3 | D2 | D1 | D0 |
|------------------------|-----|-----|-----|-----|------------------------|---------|-----|-----|-----|-------------|----|----|--------------------------|----|----|----|----|----|----|
| High Nibble Low Nibble |     |     |     |     | High Nibble Low Nibble |         |     |     |     | High Nibble |    |    |                          |    |    |    |    |    |    |
| Byte 35                |     |     |     |     |                        | Byte 34 |     |     |     |             |    |    | Byte 33 (high<br>nibble) |    |    |    |    |    |    |

| Bit         | Name                      | Description                                                                              |
|-------------|---------------------------|------------------------------------------------------------------------------------------|
| D0          | Door (from Cello<br>unit) | Contains Logical Door Input (of Cello unit) status (inverted and filtered)               |
| D1          | Volume Meter              |                                                                                          |
| D2          |                           |                                                                                          |
| D3          | Ignition                  | SPC Keyboard Ignition input status                                                       |
| D4          | Alarm Armed ON            | Represents Immobilizer bit received from Keyboard.<br>Same as D8.                        |
| D5          | Not available, sent as    | s zero                                                                                   |
| D6          |                           |                                                                                          |
| D7          |                           |                                                                                          |
| D8          | Immobilizer Armed<br>ON   | Represents Immobilizer bit received from Keyboard.<br>Same as D4.                        |
| D9          | Not available, sent as    | s zero                                                                                   |
| D10         | Hot Wiring                | Set Hotwiring detected by SPC Keyboard, reset upon entrance of Operational State 0 or 1. |
| D11         | Service                   | Set when Operational State = 4                                                           |
|             |                           | Reset in any other Operational State                                                     |
| D12         | Keypad Wrong<br>Code      | Updated upon reception of the corresponding message from keyboard.                       |
|             |                           | Set when: bit 3 or bit 4 of code recognition status byte is $1$                          |
|             |                           | Reset when both bit 3 and bit 4 of code recognition status byte are 0                    |
| D13-<br>D19 | Zeros                     |                                                                                          |





#### In case of CelloTrack

The 6 bytes of Dallas are used to monitor debug information, used by Cellocator for troubleshooting:

| Last Rcon | Resets<br>Counter | Last Stack<br>pointer | Checksum<br>Error Counter | GPRS<br>Failures<br>counter | Debug Reset<br>Reason |
|-----------|-------------------|-----------------------|---------------------------|-----------------------------|-----------------------|
| Byte 38   | Byte 37           | Byte 36               | Byte 35                   | Byte 34                     | Byte 33               |

**IMSI:** In case of a "Wake Up" Message (Transmission reason 0d202), the unit reports 6 bytes (12 first characters) of the SIM's IMSI converted to hex (Little Endian).

The IMSI number consists of up to 15 numerical characters (0-9). An IMSI consists of a three digit mobile country code (MCC, which is not reported by Cellocator Protocol) and a variable length national mobile station identity (NMSI).

The NMSI consists of two variable length parts: the mobile network code (MNC) and the mobile station identification number (MSIN). A Class 0 IMSI is 15 digits in length. A Class 1 IMSI is less than 15 digits in length.

#### Example:

#### **IMSI:** 425020315229000 (Cellcom IL)

| MCC  | 425        | Israel     |
|------|------------|------------|
| MNC  | 02         | Cellcom IL |
| MSIN | 0315229000 |            |

#### The Hex value received in bytes 33-38:

| Value (hex)                | 00      | 5A      | 16      | 0F      | 03      | 02      |
|----------------------------|---------|---------|---------|---------|---------|---------|
| Location in message type 0 | Byte 33 | Byte 34 | Byte 35 | Byte 36 | Byte 37 | Byte 38 |

#### Conversion table:

| In wireless protocol (little-endian) | 00 | 5A | 16    | 0F    | 03 | 02 |
|--------------------------------------|----|----|-------|-------|----|----|
| Big-endian (HEX values)              | 02 | 03 | 0F    | 16    | 5A | 00 |
| DEC values                           | 02 | 03 | 15    | 22    | 90 | 00 |
| NMSI (MNS + MSIN)                    |    | C  | 20315 | 22900 | 0  |    |

#### Trailer ID

The 6 bytes of Dallas are used to monitor the Dallas ID of the connected or disconnected Trailer.





# 2.2.3.18 Last GPS Fix

This field monitors a timestamp, when the GPS was last in navigation mode.

#### Structure:

| Byte  | e 40  |       |       |       |       |       |       | Byte  | e 39  |         |       |       |       |       |       |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|---------|-------|-------|-------|-------|-------|
| Day   | of M  | onth  |       |       | Hou   | Hours |       |       |       | Minutes |       |       |       |       |       |
| Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 | Bit 5   | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |

**NOTE:** The easiest way to define if the GPS data in the message is valid and updated, or historical, is to compare between the time of the timestamps and UTC time (see below).

# 2.2.3.19 Service and Location Status Byte

| Unus<br>ed |       |       | CFE Ty<br>(Infrus | vpe<br>structur | re)   | Trailer status<br>indication:<br>0-Trailer<br>Disconnected<br>1-Trailer<br>Connected | For all the devices except<br>Cello:<br>The 3rd Byte of Analog Inputs<br>Source selection represents<br>'0' – Main Power regulated<br>voltage (backward<br>compatibility<br>'1' – The 2nd Analog input<br>(on pin14) |
|------------|-------|-------|-------------------|-----------------|-------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bit 7      | Bit 6 | Bit 5 | Bit 4             | Bit 3           | Bit 2 | Bit 1                                                                                | Bit 0                                                                                                                                                                                                                |

# **CFE Type connected to Cello (Infrustructure)**

| СFЕ Туре                      | Bit 4 | Bit 3 | Bit 2 |
|-------------------------------|-------|-------|-------|
| Not Applicable (Legacy state) | 0     | 0     | 0     |
| CFE is not connected          | 0     | 0     | 1     |
| CFE BT is connected           | 0     | 1     | 0     |
| CFE Basic is connected        | 0     | 1     | 1     |
| CFE I/O is connected          | 1     | 0     | 0     |
| CFE premium is connected      | 1     | 0     | 1     |
| Undefined CFE Type            | 1     | 1     | 1     |

# 2.2.3.20 MODE 1 from GPS

This field is generated by the GPS and transparently monitored in the outgoing message from the unit. The field defines the validity of GPS data in the message.





It is a bitmapped field of flags, defined in the following manner:

The unit considers the valid fix according to the GPS Filter settings in the EEPROM. If the "Enable Tide GPS filter" flag in EEPROM is enabled, the unit considers the GPS data as valid only if: Mode 1 = 3 or 4 AND Mode 2 = 2 otherwise, if "Enable Tide GPS filter" flag in EEPROM is disabled, a fix, with the value of Mode 1 = 2, 3, 4, 5 and 6, is considered as valid.

## 2.2.3.21 MODE 2 from GPS

This field is generated by the GPS. It is a hexadecimal value, defined in the following manner:

The unit considers the valid fix according to the GPS Filter settings in the EEPROM. If the "Enable Tide GPS filter" flag in EEPROM is enabled, the unit considers the GPS data as valid only if:

```
Mode 1 = 3 or 4
AND
Mode 2 = 2
otherwise, if "Enable Tide GPS filter" flag in EEPROM is disabled, a fix with the value of
Mode 1 = 2, 3, 4, 5 and 6 is considered as valid.
```

### 2.2.3.22 Number of Satellites Used

Number of satellite measurements used for current position fix. Possible values are 0 to 12.

### 2.2.3.23 Longitude, Latitude

Longitude and latitude coordinates of current position fix. Both coordinates are sent as 32-bit signed integers, representing the coordinates in 10<sup>-8</sup> radian resolution. Possible values are  $-\pi$  to  $+\pi$  for longitude, or  $-\frac{\pi}{2}$  to  $+\frac{\pi}{2}$  for latitude. The coordinates refer to WGS-84 map datum and ellipsoid.

### 2.2.3.24 Altitude

Altitude of current position fix. Represented as a 32-bit signed integer, in  $10^{-2}$  meter resolution (altitude is represented in centimeters).

### 2.2.3.25 Ground Speed

Current speed (absolute value of the vector). Represented as a 32-bit unsigned integer, in  $10^{-2}$  meter/sec resolution (speed is represented in centimeters/sec).

### 2.2.3.26 Heading/Speed Direction (True Course)

Direction (angle) of the speed vector. Represented as 16-bit unsigned integer, in  $10^{-3}$  radian resolution. Possible values are 0 to  $2\pi$ .

Wireless Communication Protocol 31p

Page 41 of 113





# 2.2.3.27 System Time

Universal coordinated time of the position fix, represented in seconds (0-59), minutes (0-59) and hours (0-23).

Note that the system time and date fields are monitoring system time, based on the internal timer of the unit. The internal timer synchronizes with GPS time when the GPS fix is considered as valid (or always as per configuration flag).

### 2.2.3.28 System Date

Universal coordinated date of the position fix, represented in days (1-31), months (1-12) and years (1980-2079).

Note that the system time and date fields are monitoring system time, based on the internal timer of the unit. The internal timer synchronizes with GPS time when the GPS fix is considered as valid (or always as per configuration flag).

### 2.2.3.29 Checksum

The checksum is a last byte of sum of all bytes in a message, excluding the 4 bytes of System Code and the Checksum itself.

#### Example:

The message:

4D434750000600000081A0202120400000021006230000006B00E100000000000 0000000E5A100040206614EA303181A57034E1200000000000000001525071403D607 CS

Calculation of the CS=>

00+06+00+00+08+1A+02+02+12+04+00+00+00+21+00+62+30+00+00+ 6B+00+E1+00+00+00+00+00+00+00+00+00+E5+A1+00+04+02+06+61+4E+ A3+03+18+1A+57+03+4E+12+00+00+00+00+00+00+00+00+15+25+07+14+03+ D6+07=0x749

=>CS=0x49

# 2.3 **Programming Data Message Definition**

### 2.3.1 Message Ingredients

The programming status message has a predefined length of 31 bytes. It contains the following data (listed in the actual transmitted order):

#### Message header

- System code 4 bytes
- Message type ("3") 1 byte
- Unit ID 4 bytes
- Communication Control Field 2 bytes
- Message numerator 1 byte
- Spare byte 1 byte

#### Memory data

• Block code – 1 byte

Wireless Communication Protocol 31p

Page 42 of 113





#### • Block data – 16 bytes

Error detection code – 8-bit additive checksum (excluding system code)

### 2.3.2 **Detailed Per-Field Specifications**

#### 2.3.2.1 Message header

The message header is identical to the message header of message type 0, except the message type field set as "3" in programming messages.

#### 2.3.2.2 Block Code

OTA (over the air) parameter programming is done in blocks. The entire parameter memory is partitioned to 16-bytes long blocks. Each of those blocks is identified with a block code. The block code field contains the code of the block whose data is sent in this message (in the block data field).

#### 2.3.2.3 Block Data

Contains the actual data programmed in the specified block of the parameter memory.





# 2.4 Logged Fragment of Data Forwarded From Serial Port to Wireless Channel

The message contains a fragment of payload forwarded from the COM port of the unit, optionally escorted by fleet management data (as per unit's configuration).

The forwarded content is fragmented by chunks of 54 bytes long (last one is zeropadded); chunks are enumerated and equipped by fragmentation control fields, stored in an events log memory and then uploaded as message type 7.

Same as message type 0 and 9, message type 7:

- Continues the Message Numerator used by other logged messages
- Requires acknowledge from the server (Message type 4) in order to erase the specific message from the log.
- The message 7 utilizes the same retransmission algorithms as other logged message types.

# 2.4.1 **The Container**

The container is a data structure, created by the unit in its RAM buffer upon reception of the data for forwarding from COM port (in enabled in a configuration).

The forwarded payload in escorted by 48 bytes of FM data (attached after the last byte of payload) and total length of payload + FM data (first 2 bytes of the container, before the first byte of payload).

Every container is assigned by 6 bits numerator (increased every data packet received from COM port), used in fragmentation process and reported with the container.

| Forwarded<br>Message Code                       |                          | The Container |                                 |  |  |                                   |  |                 |
|-------------------------------------------------|--------------------------|---------------|---------------------------------|--|--|-----------------------------------|--|-----------------|
| A sequential 7<br>bits ID of the<br>container + | Length of c<br>(2 bytes) | ontainer      | The payload of forwarded data X |  |  | 48 bytes of fleet management data |  |                 |
| indication bit<br>(Single byte)                 | Byte 1                   | Byte 2        | Byte 3                          |  |  | Byte 3 + X                        |  | Byte 3+<br>X+48 |

### 2.4.1.1 The byte structure of a container

The data structure to be fragmented and forwarded:

| Forwarded Message Code                         |                               |                               |                            |               |              |               |             |
|------------------------------------------------|-------------------------------|-------------------------------|----------------------------|---------------|--------------|---------------|-------------|
| Container<br>(1) /<br>Simple<br>payload<br>- 0 | In case of c<br>bits ID of th | container: se<br>ne forwardec | equential 7 b<br>1 packet. | its ID of the | container, o | therwise - se | equential 7 |
| Bit 7                                          | Bit 6                         | Bit 6                         | Bit 4                      | Bit 3         | Bit 2        | Bit 1         | Bit 0       |





| 1    | Payload length (X)                                 | 2 bytes containing the length of the     |  |  |  |
|------|----------------------------------------------------|------------------------------------------|--|--|--|
| 2    |                                                    | container starting from byte 3.          |  |  |  |
| 3    | The payload, X bytes (up to 512 bytes)             | Data as it is received from 3rd party or |  |  |  |
|      |                                                    | Garmin Packet                            |  |  |  |
| 3+X  |                                                    |                                          |  |  |  |
| 4+X  | Unit's status + Current GSM Operator (1st nibble)  | (same as byte 16 of Msg type 0)          |  |  |  |
| 5+X  | Current GSM Operator (2nd and 3rd nibble) (same    | e as byte 17 of Msg type 0)              |  |  |  |
| 6+X  | Current GSM Operator (4th and 5th nibble) (same    | e as byte 25 of Msg type 0)              |  |  |  |
| 7+X  | Unit's mode of operation (same as byte 20 of Msg   | type 0)                                  |  |  |  |
| 8+X  | Unit's I/O status 1st byte (same as byte 21 of Msg | g type 0)                                |  |  |  |
| 9+X  | Unit's I/O status 2nd byte (same as byte 22 of Ms  | g type 0)                                |  |  |  |
| 10+X | Unit's I/O status 3rd byte (same as byte 23 of Ms  | g type 0)                                |  |  |  |
| 11+X | Unit's I/O status 4th byte (same as byte 24 of Ms  | g type 0)                                |  |  |  |
| 12+X | Analog input 1 value (same as byte 26 of Msg typ   | e 0)                                     |  |  |  |
| 13+X | Analog input 2 value (same as byte 27 of Msg typ   | e 0)                                     |  |  |  |
| 14+X | Analog input 3 value (same as byte 28 of Msg typ   | e 0)                                     |  |  |  |
| 15+X | Analog input 4 value (same as byte 29 of Msg typ   | e 0)                                     |  |  |  |
| 16+X | Mileage counter (total 24 bits) (same as bytes 30  | -32 of Msg type 0)                       |  |  |  |
| 17+X |                                                    |                                          |  |  |  |
| 18+X |                                                    |                                          |  |  |  |
| 19+X | Driver ID, PSP/SPC Specific Data, Accelerometer S  | Status or SIM IMSI                       |  |  |  |
| 20+X | (same as bytes 33-38 of Msg type 0)                |                                          |  |  |  |
| 21+X |                                                    |                                          |  |  |  |
| 22+X |                                                    |                                          |  |  |  |
| 23+X |                                                    |                                          |  |  |  |
| 24+X |                                                    |                                          |  |  |  |
| 25+X | Time of last GPS Fix (same as bytes 39-40 of Msg   | type 0)                                  |  |  |  |
| 26+X |                                                    |                                          |  |  |  |
| 27+X | Location status (flags) (same as Sub-Type 4 of M   | sg type 9)                               |  |  |  |





| 28+X | Mode 1 (from GPS)                                                 |
|------|-------------------------------------------------------------------|
| 29+X | Mode 2 (from GPS)                                                 |
| 30+X | Number of satellites used (from GPS)                              |
| 31+X | Longitude                                                         |
| 32+X |                                                                   |
| 33+X |                                                                   |
| 34+X |                                                                   |
| 35+X | Latitude                                                          |
| 36+X |                                                                   |
| 37+X |                                                                   |
| 38+X |                                                                   |
| 39+X | Altitude                                                          |
| 40+X |                                                                   |
| 41+X |                                                                   |
| 42+X | Ground speed                                                      |
| 43+X |                                                                   |
| 44+X | Speed direction (true course)                                     |
| 45+X |                                                                   |
| 46+X | UTC time – seconds                                                |
| 47+X | UTC time – minutes                                                |
| 48+X | UTC time – hours                                                  |
| 49+X | UTC date – day                                                    |
| 50+X | UTC date - month                                                  |
| 51+X | UTC date - year minus 2000 - 1 byte (e.g. value of 7 = year 2007) |

# 2.4.2 Data path chart

| Forwarded<br>Message Code                                                  | e                       | The Container                        |                       |                                                                  |                                                   |                        |                                                 |                                      |                |                 |
|----------------------------------------------------------------------------|-------------------------|--------------------------------------|-----------------------|------------------------------------------------------------------|---------------------------------------------------|------------------------|-------------------------------------------------|--------------------------------------|----------------|-----------------|
| A sequential<br>bits ID of the<br>container +                              | 7                       | Lengt<br>(2 by                       | h of containe<br>tes) | r The pay                                                        | The payload of forwarded data X 48 bytes of fleet |                        |                                                 |                                      | es of fleet ma | anagement data  |
| indication bit<br>(Single byte)                                            |                         | Byte :                               | 1 Byte 2              | Byte 3                                                           |                                                   |                        |                                                 | Byte 3 ·                             | + X            | Byte 3+<br>X+48 |
|                                                                            |                         |                                      |                       |                                                                  |                                                   | $\downarrow$           |                                                 |                                      |                |                 |
|                                                                            |                         |                                      |                       | Fragmen                                                          | ited                                              | Container              |                                                 |                                      |                |                 |
| Fragm                                                                      | ent 1                   |                                      | Frag                  | Iment 2                                                          |                                                   | Fra                    | igment n                                        |                                      | Last           | : fragment      |
| 54 first4 bytes ofbytes offragmentcontainer,managementstartingfromlengthof |                         | 4 bytes of<br>fragment<br>management |                       | Fragment n<br>54 bytes of 4 bytes<br>container fragme<br>manager |                                                   | es of<br>nent<br>ement | 54 bytes<br>of<br>container<br>(zero<br>padded) | 4 bytes of<br>fragment<br>management |                |                 |
| Received                                                                   | Received on server side |                                      |                       |                                                                  |                                                   |                        |                                                 |                                      |                |                 |

Wireless Communication Protocol 31p

Page 46 of 113





| Header<br>of OTA<br>Msg<br>type 7<br>(12<br>bytes) | Static<br>byte<br>containing<br>0x07 | Message<br>numerator<br>(Y)   | Forwarded<br>Message<br>Code | Fragment<br>control<br>byte | 54 first bytes of container (starting from length filed) in Fragment 1 | CS |
|----------------------------------------------------|--------------------------------------|-------------------------------|------------------------------|-----------------------------|------------------------------------------------------------------------|----|
| Header<br>of OTA<br>Msg<br>type 7                  | Static<br>byte<br>containing<br>0x07 | Message<br>numerator<br>(Y+1) | Forwarded<br>Message<br>Code | Fragment<br>control<br>byte | 54 bytes of container in Fragment 2                                    | CS |
|                                                    | !                                    | !                             |                              |                             |                                                                        |    |
| Header<br>of OTA<br>Msg<br>type 7                  | Static<br>byte<br>containing<br>0x07 | Message<br>numerator<br>(Y+2) | Forwarded<br>Message<br>Code | Fragment<br>control<br>byte | 54 bytes of container (zero padded) in last<br>Fragment                | CS |

# 2.4.3 **Byte-Aligned Table**

| Byte<br>no. | Description                                                                                               |                                                      |                                            |              | Containi      | ng           |         |                 |                |                      |  |  |
|-------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------|--------------|---------------|--------------|---------|-----------------|----------------|----------------------|--|--|
| 1           | System code                                                                                               | e, byte 1                                            |                                            |              | ASCII "N      | 1″           |         |                 |                |                      |  |  |
| 2           | System code                                                                                               | e, byte 2                                            |                                            |              |               |              |         | ASCII "C"       |                |                      |  |  |
| 3           | System code                                                                                               | e, byte 3                                            |                                            |              |               |              |         | ASCII "C        | 5″             |                      |  |  |
| 4           | System code                                                                                               | e, byte 4                                            |                                            |              |               |              |         | ASCII "F        | )″             |                      |  |  |
| 5           | Message typ                                                                                               | e                                                    |                                            |              |               |              |         | 7               |                |                      |  |  |
| 6           | Unit's ID                                                                                                 |                                                      |                                            |              |               |              |         |                 |                |                      |  |  |
| 7           | (total 32 bits                                                                                            | s)                                                   |                                            |              |               |              |         |                 |                |                      |  |  |
| 8           |                                                                                                           |                                                      |                                            |              |               |              |         |                 |                |                      |  |  |
| 9           |                                                                                                           |                                                      |                                            |              |               |              |         |                 |                |                      |  |  |
| 10          | Communicat                                                                                                | tion Contro                                          | l field (san                               | ne as in MS  | G Type 0)     |              |         |                 |                |                      |  |  |
| 11          |                                                                                                           |                                                      |                                            |              |               |              |         |                 |                |                      |  |  |
| 12♠         | Message Nu                                                                                                | merator                                              |                                            |              |               |              |         | Sequent used by | ial nun<br>ACK | nerator of messages, |  |  |
| 13♠         | Static byte o                                                                                             | containing                                           | value 0x07                                 |              |               |              |         |                 |                |                      |  |  |
| 14≜         | Forwarded N<br>Sequential 7<br>Assigned for<br>Container<br>(1) / Simpl<br>payload                        | Message Co<br>7 bits ID of<br>7 each cont<br>8 seque | ode<br>the Contai<br>ainer<br>ntial 7 bits | ner+ conta   | ainer indicat | ion bit (MSE | 3)      |                 |                |                      |  |  |
|             | - 0                                                                                                       |                                                      |                                            |              |               |              |         |                 |                |                      |  |  |
|             | Bit 7                                                                                                     | Bit 6                                                | Bit                                        | 6            | Bit 4         | Bt3          | Bit     | 2               | Bit 1          | Bit 0                |  |  |
| 15♠         | Fragment Co                                                                                               | ontrol Byte                                          |                                            |              |               |              |         |                 |                |                      |  |  |
|             | First Last Fragment No (starting from 1)                                                                  |                                                      |                                            |              |               |              |         |                 |                |                      |  |  |
|             | Frame Frame                                                                                               |                                                      |                                            |              |               |              |         |                 |                |                      |  |  |
|             | Bit / Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0                                                           |                                                      |                                            |              |               |              |         |                 |                |                      |  |  |
| 16♠         | 54 bytes of container in fragment                                                                         |                                                      |                                            |              |               |              |         |                 |                |                      |  |  |
|             | (first one begins with two bytes of length of container starting from byte 3;<br>last one is zero padded) |                                                      |                                            |              |               |              |         |                 |                |                      |  |  |
| 69♠         | (first one be<br>last one is z                                                                            | ero paddec                                           | wo bytes o<br>l)                           | of length of | container s   | tarting from | byte 3; |                 |                |                      |  |  |





# 2.4.3.1 Fragment Control Byte

#### • First Frame

This bit contains "1" if the packet carries the first frame of the container, otherwise zero.

#### • Last Frame

This bit contains "1" if the packet carries the last frame of the container, otherwise zero.

#### • Fragment number

Contains sequential number of the fragment, carried in the packet (starting from 1)





# 2.5 Real Time Data Forwarded From Serial Port to Wireless Channel (Msg 8)

The message contains a payload forwarded from the COM port of the unit, optionally escorted by fleet management data (as per unit's configuration, refer to a Container definition above in this document).

The message contains data of variable length up to 562 bytes.

#### 2.5.1 Message Ingredients

#### Message header

- System Code 4 bytes
- Message Type 1 byte
- Destination Unit ID 4 bytes
- Command Numerator 1 byte
- Spare 4 bytes

#### Message payload

- Message Code 1 byte
- Fragment Control Byte 1 byte
- Payload Length 2 bytes
- Payload variable length
- Error Detection Code 8 bit additive checksum

### 2.5.2 Byte-Aligned Table

| 1  | System code, byte 1 – ASCII "M"                       |
|----|-------------------------------------------------------|
| 2  | System code, byte 2 – ASCII "C"                       |
| 3  | System code, byte 3 – ASCII "G"                       |
| 4  | System code, byte 4 – ASCII "P"                       |
| 5  | Message type-byte (a value of 8 for a forwarded data) |
| 6  | Target Unit's ID (total 32 bits)                      |
| 7  |                                                       |
| 8  |                                                       |
| 9  |                                                       |
| 10 | Command Numerator Field                               |
| 11 | Spare (sent as zeros)                                 |
| 12 |                                                       |
| 13 |                                                       |
| 14 |                                                       |





| 15 | Forwarded Message Code                        |                                                                             |
|----|-----------------------------------------------|-----------------------------------------------------------------------------|
| 16 | Fragment Control Byte – Constant value of 0XC | 0                                                                           |
| 17 | Length of Payload (or container)              |                                                                             |
| 18 |                                               |                                                                             |
| 19 | Payload First Byte                            | First Byte of payload of forwarded data in a container                      |
|    |                                               |                                                                             |
|    |                                               |                                                                             |
|    | Payload Last Byte                             | Last byte of the container (of 48 bytes of escorting fleet management data) |
|    | Checksum                                      |                                                                             |

# 2.5.3 **Detailed Per-Field Specifications**

# 2.5.3.1 Message header

The message header is identical to the message header of message type 0, except the message type field set as "8" in data forwarding messages.

# 2.5.3.2 Forwarded Message Code

A counter of forwarded messages, changes every time message is forwarded from the terminal.

| Container<br>(1) / Simple<br>payload<br>- 0 | In case of co<br>the forwarde | ntainer: seque<br>d packet. | ential 7 bits IC | of the contain | ner, otherwise | e - sequential : | 7 bits ID of |
|---------------------------------------------|-------------------------------|-----------------------------|------------------|----------------|----------------|------------------|--------------|
| Bit 7                                       | Bit 6                         | Bit 6                       | Bit 4            | Bit 3          | Bit 2          | Bit 1            | Bit 0        |

# 2.5.3.3 Fragment Control Byte

That field defines, to the control center application, how many fragments are transferred for the same data block.

| Bit 7                     | Bit 6                   | Bit 5    | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
|---------------------------|-------------------------|----------|-------|-------|-------|-------|-------|
| Unit<br>Originated<br>Bit | Last<br>Fragment<br>Bit | Fragment | Index |       |       |       |       |

- Last Fragment Bit set to "1" if the fragment is the last one.
- Unit Originated Bit set to "1" if the message origin is a unit and "0" if the message origin is an application.]





• Fragment Index – fragment number.

In case of MSG type 8 will always contain 0xC0





# 2.6 Modular Message (Msg 9)

The modular data packet is designed to provide different data types in the same packet. The modular data packet contains the following bytes (listed in the actual transmitted order):

### 2.6.1 Message Ingredients

Message Header

- System Code 4 bytes
- Message Type 1 byte
- Unit ID 4 bytes
- Communication Control Field 2 bytes
- Message Numerator (Anti-TangoTM) 1 byte

Packet Control Field – 1 byte

Total Length – 1 byte

First Sub-Data Type- 1 byte

First Sub-Data Length - 1 byte

First Sub-Data- variable length, depends on Data Type

.....

Nth Sub-Data Type – 1 byte (option)

Nth Sub-Data Length - 1 byte

Nth Sub-Data- variable length, depends on Data Type N

Error Detection Code - 8 bit additive checksum

#### Byte-Aligned Table

| 1  | System code, byte 1 – ASCII "M"                       |
|----|-------------------------------------------------------|
| 2  | System code, byte 2 – ASCII "C"                       |
| 3  | System code, byte 3 – ASCII "G"                       |
| 4  | System code, byte 4 – ASCII "P"                       |
| 5  | Message type byte (a value of 9 for a modular packet) |
| 6  | Target Unit's ID (total 32 bits)                      |
| 7  |                                                       |
| 8  |                                                       |
| 9  |                                                       |
| 10 | Communication Control field                           |





| 11 |                         |
|----|-------------------------|
| 12 | Message Numerator       |
| 13 | Packet Control Field    |
| 14 | Total Data length       |
| 15 | First Sub-data Type     |
| 16 | First Sub-data Length   |
| 17 | First Sub-data The Data |
|    | Nth Sub-data Type       |
|    | Nth Sub-data Length     |
|    | Nth Sub-data The Data   |
|    | Checksum                |

# 2.6.2 Detailed Per-Field Specifications

### 2.6.2.1 System Code

System code is a 4-bytes value, which identifies the Cellocator GSM-SMS system. The field is sent as the ASCII values of the letters "M", "C", "G", "P", in that order.

# 2.6.2.2 Message Type

Message type identifies the type of message. It allows the receiver to distinguish between status messages, programming and other data messages, according to the value sent in this field. Modular messages contain a value of 9 (nine) in the message type field.

# 2.6.2.3 Unit ID

Refer to Section 2.2.3.3.

### 2.6.2.4 Communication Control Field

Refer to Section 2.2.3.4.

### 2.6.2.5 Message Numerator (Anti-Tango™)

Refer to Section 2.2.3.5.





# 2.6.2.6 Packet Control Field

| Bit 7     | Bit 6                   | Bits 5-0 |
|-----------|-------------------------|----------|
| Direction | Out of space indication | unused   |

#### Direction

- 0 Data from the unit
- 1 Request (unit-bound)

#### **Out of Space Indication**

- 0 All the requested data present in the message
- 1 Some Sub-Data was not returned due to data size

#### 2.6.2.7 Total Length

That field includes the number of data bytes with their types and lengths. It includes the number of bytes from byte 15 to the byte of the checksum, which is not included.

#### 2.6.2.8 Sub-Data Types List

| 0     | Unused                                         |
|-------|------------------------------------------------|
| 1     | Firmware Platform Manifest                     |
| 2     | CAN data                                       |
| 3     | CAN Trigger data                               |
| 4     | Time & Location Stamp data                     |
| 5     | Accelerometer Data                             |
| 6     | PSP – UL messages from Alarm system            |
| 7     | Usage Counter update                           |
| 8     | Command Authentication table update            |
| 9     | Neighbor list of the serving GSM cell          |
| А     | Maintenance Server Platform Manifest           |
| В     | Data forwarded from the Keyboard               |
| D     | Compressed vector change report                |
| 12    | Modular Platform Manifest                      |
| 13    | Reserved                                       |
| 14    | Pulse Counter OTA request command and response |
| 15-EF | Reserved                                       |
| F0    | Reserved – Infrustructure                      |
| F1    | Reserved- Infrustructure                       |
| F2    | Reserved- Infrustructure                       |
| F3    | Reserved- Infrustructure                       |





| F4    | Reserved- Infrustructure |
|-------|--------------------------|
| F5-FF | Empty                    |

# 2.6.3 **The Firmware Platform Manifest (Sub-Data Type 1)**

This type is generated as a reply to a Firmware Platform Manifest request (see Command Channel (Section 2.6.14).

| Byte<br>number | Description                                         | Value                                                                                                                                                                                            |  |
|----------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1-14           | Standard header (as described above)                |                                                                                                                                                                                                  |  |
| 15             | Sub-data type                                       | 0×01                                                                                                                                                                                             |  |
| 16             | Sub-data length                                     | 0x12                                                                                                                                                                                             |  |
| 17             | Processor family identifier                         | 0x01 - PIC18Fx520/620/720<br>0x02 - PIC18Fx621/525<br>0x03 - PIC18Fx527/622/627/722<br>(x=6/8)<br>0x04- STM32F101RCT6                                                                            |  |
| 18             | Hardware interface and peripherals identifier       | 0x01 – 40/44 pin micro, peripherals<br>as per family.<br>0x02 – 64 pin micro, peripherals as<br>per family.<br>0x03 – 80 pin micro, peripherals as<br>per family.<br>0x04– 64 pin STM32 101 RTC6 |  |
| 19             | Size of program memory (in 1024 words units) (LSB). | In blocks of 1024 words                                                                                                                                                                          |  |
| 20             | Size of program memory (in 1024 words units). (MSB) |                                                                                                                                                                                                  |  |
| 21-22          | Size of volatile memory (LSB)                       | Divided by 128 bytes and rounded                                                                                                                                                                 |  |
|                | Size of volatile memory (MSB)                       | up/down to the closest integer                                                                                                                                                                   |  |
| 23-24          | Size of internal non-volatile memory (LSB)          | Divided by 128 bytes and rounded up/down to closest integer                                                                                                                                      |  |
|                | Size of internal non-volatile memory<br>(MSB)       |                                                                                                                                                                                                  |  |
| 25-26          | Size of external non-volatile memory (LSB)          | In blocks of 1024 words units                                                                                                                                                                    |  |
|                | Size of external non-volatile memory (MSB)          |                                                                                                                                                                                                  |  |
| 27             | External non-volatile memory type                   | 0x01 – I <sup>2</sup> C generic NVRAM (most<br>EEPROMs).                                                                                                                                         |  |





| Byte<br>number | Description                             | Value                                                                                                                                                                                          |  |
|----------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                |                                         | 0x02 – SPI generic NVRAM.                                                                                                                                                                      |  |
| 28             | Hardware Version                        | Same as reported in OTA status                                                                                                                                                                 |  |
| 29-30          | Reprogramming facility identifier (LSB) | 0×01                                                                                                                                                                                           |  |
|                | Reprogramming facility identifier (MSB) | 0x00                                                                                                                                                                                           |  |
| 31-32          | Script language version (LSB)           | 0x01                                                                                                                                                                                           |  |
|                | Script language version (MSB)           | 0×00                                                                                                                                                                                           |  |
| 33-34          | Current Firmware ID (LSB)               | Note that this is in fact not a                                                                                                                                                                |  |
|                | Current Firmware ID (MSB)               | descriptor of the firmware platform<br>per se, but rather a descriptor of the<br>actual firmware running on the<br>platform. However, it is a valuable<br>field when a re-flash is considered. |  |
| 35             | Checksum                                |                                                                                                                                                                                                |  |

# 2.6.4 The CAN Data (Sub-Data Type 2)

The CAN data module includes data from all the CAN sensors, defined in the unit's EEPROM. Each CAN sensor is represented by 6 (six) bytes of data as defined below:

Options - 1 byte

Spare – 1 byte

CAN sensor value - 4 bytes (little Endian)

| Can Sensor 0 | 0    | Options byte     |
|--------------|------|------------------|
|              | 1    | Spare            |
|              | 2    | CAN Sensor Value |
|              | 3    |                  |
|              | 4    |                  |
|              | 5    |                  |
| Can Sensor N | 6n   | Options byte     |
|              | 6n+1 | Spare            |
|              | 6n+2 | CAN Sensor Value |
|              | 6n+3 |                  |
|              | 6n+4 |                  |
|              | 6n+5 |                  |

#### **Options byte definition**





| Data receiving flag | Spare | Sensor data effective bit length |  |
|---------------------|-------|----------------------------------|--|
| Bit 7               | Bit 6 | Bit 5 - 0                        |  |

## 2.6.4.1 CAN Sensor Value

The CAN sensor value contains the actual data, as it is reported from the defined sensors reported in Little Endian style (LSB first).

## 2.6.5 **CAN Trigger Module (Sub-Data Type 3)**

The packet is sent as a result of a trigger caused by one of the CAN sensors or by a Complex Trigger. The length of the sub-data type is variable.

### 2.6.5.1 Module Data

#### CAN trigger index/ First CAN Trigger Index - 1 byte

This value contains the index of the CAN trigger record (or the first trigger from the Complex Trigger) that caused the transmission. The index of every CAN sensor is set in the EEPROM of the unit during programming.

| Complex trigger | CAN trigger index / First CAN trigger index (if<br>Complex Trigger bit =1) |  |
|-----------------|----------------------------------------------------------------------------|--|
| Bit 7           | Bits 6-0                                                                   |  |

#### Second CAN Trigger Index of Complex Trigger - 1 byte

This value contains the index of the second CAN trigger (from the Complex Trigger) that caused the transmission.

| 2nd sensor in complex trigger | Second CAN trigger index (if "2 sensors in Complex trigger" bit =1), otherwise spare |  |
|-------------------------------|--------------------------------------------------------------------------------------|--|
| Bit 7                         | Bits 6-0                                                                             |  |

#### Included CAN Sensors Count - 1 byte

This value is the number of CAN sensors included in the module.

#### CAN Sensors Data – 7·n bytes

"n" is number of included CAN sensors, in accordance with the information in the previous paragraph.

The list is composed of the following fields, repeated for each included sensor:

Sensor index – 1 byte

Options byte – 1 byte (see description in sub-type 2)

Spare – 1 byte

CAN sensor value – 4 bytes





**NOTE:** Complex triggers will always be generated as a message, containing values of both sensors of the complex trigger, and, optionally, the third sensor (additional one, configurable) and the GPS (see below).

# 2.6.6 Logged CAN Trigger Module (Sub-Data Type 3)

Up to codebase 27e, the logging infrastructure of the Cellocator unit was only applicable to position messages (type 0). Each event was inserted into an external EEPROM as a 58-bytes record, and 12 more bytes were added at delivery time (synchronization string, unit's ID, communication control field and checksum).

From fw28, the same logging mechanism was applied to messages type 9, specifically to actively generated messages, triggered by CAN bus management routines.

In order to simplify the development it has been decided to use the same logging procedure, which means that the length of a CAN logged message will always be 58 bytes, similarly to position message.

The message numerator of such a type 9 logged event will maintain the same sequence as other logged position events (type 0).

The message will require an acknowledgement identical to the acknowledge sent for message type 0 (and message type 8).

Due to the above-mentioned logging size limitation the "Specific data – logged" CAN event will include (up to) 3 CAN sensors and a GPS sub-data packet (sub-data 4).

### 2.6.6.1 Packet Specification

The 58 bytes, which are actually logged are marked by the " $\pm$ " icon, the rest are added at delivery time.

| Byte no. | Description                 | Containing         |
|----------|-----------------------------|--------------------|
| 1        | System code, byte 1         | ASCII "M″          |
| 2        | System code, byte 2         | ASCII "C"          |
| 3        | System code, byte 3         | ASCII "G"          |
| 4        | System code, byte 4         | ASCII "P"          |
| 5        | Message type                | 9                  |
| 6        | Unit's ID (total 32 bits)   | As explained above |
| 7        |                             |                    |
| 8        | _                           |                    |
| 9        |                             |                    |
| 10       | Communication Control field |                    |
| 11       |                             |                    |





| Byte no.     | Description                          | Containing                                                             |                                                                                               |  |
|--------------|--------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--|
| 12♠          | Message Numerator                    |                                                                        |                                                                                               |  |
| 13♠          | Packet Control Field                 | 0×00                                                                   |                                                                                               |  |
| 14♠          | Total Data length                    | 0d55                                                                   |                                                                                               |  |
| 15♠          | Sub-Data Type                        | 3                                                                      |                                                                                               |  |
| 16♠          | Sub-Data Length                      | 0d24                                                                   |                                                                                               |  |
| 17•          | Index of triggered CAN sensor        | Complex<br>Trigger                                                     | CAN trigger index / First<br>CAN trigger index (if<br>Complex Trigger bit =1)                 |  |
|              |                                      | Bit 7                                                                  | Bits 6-0                                                                                      |  |
| 18♠          | Spare (or Second CAN trigger index ) | 2nd sensor<br>in<br>Complex<br>trigger                                 | Second CAN trigger<br>index (if "2 sensors in<br>Complex trigger" bit<br>=1), otherwise spare |  |
|              |                                      | Bit 7                                                                  | Bits 6-0                                                                                      |  |
| 19♠          | Number of included sensors           | Between 1 and 3                                                        |                                                                                               |  |
| 20-26        | First included sensor                | Sensor index                                                           |                                                                                               |  |
|              |                                      | Options byte                                                           |                                                                                               |  |
|              |                                      | Spare                                                                  |                                                                                               |  |
|              |                                      | 4 bytes of CAN sensor value                                            |                                                                                               |  |
| 27-33 🛦      | Second included sensor               | Same as first included sensor                                          |                                                                                               |  |
| 34-40♠       | 3rd included sensor                  | Same as fir                                                            | st included sensor                                                                            |  |
| 41♠          | Sub-data Type                        | 4                                                                      |                                                                                               |  |
| 42♠          | Sub-data Length                      | 0d25                                                                   |                                                                                               |  |
| 43♠          | Location status (flags)              | See the following description of sub-<br>data type 4 in this document. |                                                                                               |  |
| 44 <b></b> ♠ | Mode 1 (from GPS)                    |                                                                        |                                                                                               |  |
| 45♠          | Mode 2 (from GPS)                    |                                                                        |                                                                                               |  |
| 46♠          | Number of satellites used (from GPS) |                                                                        |                                                                                               |  |
| 47-50♠       | Longitude                            |                                                                        |                                                                                               |  |
| 51-54♠       | Latitude                             |                                                                        |                                                                                               |  |
| 55-57♠       | Altitude                             |                                                                        |                                                                                               |  |





| Byte no.   | Description                                                          | Containing |
|------------|----------------------------------------------------------------------|------------|
| 58-59♠     | Ground speed                                                         |            |
| 60-61♠     | Speed direction (true course)                                        |            |
| 62♠        | UTC time – seconds                                                   |            |
| 63♠        | UTC time – minutes                                                   |            |
| 64♠        | UTC time – hours                                                     |            |
| 65♠        | UTC date – day                                                       |            |
| 66♠        | UTC date - month                                                     |            |
| 67 <b></b> | UTC date - year minus 2000 – 1 byte<br>(e.g. value of 7 = year 2007) |            |
| 68-69♠     | Spare                                                                | zeros      |
| 70         | Check Sum                                                            |            |

If there are less than 3 sensors defined for the specific trigger, the unit sends the associated fields as zeros. The message length will remain constant.

**NOTE:** A logging frequency limitation exists: the unit will not log more than 1 message per 4 seconds.

\_\_\_\_\_

\_\_\_\_\_

# 2.6.7 **Time and Location Stamp Module (Sub-Data Type 4)**

The module is designed to provide the time and location information as a part of modular message. The module can be requested with the modular request command. It is also automatically added to the self-initiated modular messages generated by the unit.

| Sub-data type=4                      |
|--------------------------------------|
| Length = 25                          |
| Location status (flags)              |
| Mode 1 (from GPS)                    |
| Mode 2 (from GPS)                    |
| Number of satellites used (from GPS) |
| Longitude                            |
|                                      |
|                                      |
|                                      |
| Latitude                             |

Wireless Communication Protocol 31p

\_\_\_\_\_





| <br>Altitude                                                      |
|-------------------------------------------------------------------|
|                                                                   |
| <br>Ground speed                                                  |
| <br>Speed direction (true course)                                 |
|                                                                   |
| UTC time – seconds                                                |
| UTC time – minutes                                                |
| UTC time – hours                                                  |
| UTC date – day                                                    |
| UTC date - month                                                  |
| UTC date - year minus 2000 – 1 byte (e.g. value of 7 = year 2007) |

## 2.6.7.1 Location Status

Most significant bit (bit 7) – time inaccuracy flag. "1" indicates time is inaccurate, either because time was never acquired, or because accuracy is doubtful due to hibernation.

Bit 6 – GPS disconnected indication (0=connected, 1=not connected/error).

### 2.6.7.2 MODE 1 from GPS

Refer to Section 0.

### 2.6.7.3 MODE 2 from GPS

Refer to Section 2.2.3.21.

### 2.6.7.4 Number of Satellites Used

Refer to Section 2.2.3.22.

### 2.6.7.5 Longitude, Latitude

Refer to Section 2.2.3.23.

### 2.6.7.6 Altitude

Refer to Section 2.2.3.24.

#### 2.6.7.7 Ground Speed

This indicates the current speed (absolute value of the vector). It is represented as a 16-bit unsigned integer, in  $10^{-2}$  meter/sec resolution (speed is represented in centimeters/second).

Wireless Communication Protocol 31p

Page 61 of 113





The source of speed data is either the GPS, the vehicle's CAN bus or frequency metering input as per unit's type, installation and configuration.

The reported value may monitor the immediate value of speed recorded upon generation of the message or the maximum value of speed from last report (as per the configuration). Byte 10, bit 6 of the message is monitoring the actual reported type.

## 2.6.7.8 Heading/Speed Direction (True Course)

Refer to Section 2.2.3.26

### 2.6.7.9 UTC Time

Refer to Section 2.2.3.27.

#### 2.6.7.10 UTC Date

Refer to Section 2.2.3.28.

#### 2.6.8 Accelerometer Response Module (Sub-Data Type 5)

*Note this is supported by EDR only* (Refer to an appropriate documentation)

#### 2.6.9 **PSP – UL Messages from Alarm System (Sub-Data Type 6)**

This message contains encapsulated data forwarded from a CE8 (or CE8 compatible) Car Alarm System. Refer to the Corresponding Car Alarm protocol for more details.

#### 2.6.9.1 Message Structure

| Byte Number |                                                  | Data     |
|-------------|--------------------------------------------------|----------|
| Ν           | Sub-data type                                    | 6        |
| N+1         | Sub-data length                                  | Variable |
| N+2 N+X     | Payload: data forwarded<br>from car alarm system | Spare    |

### 2.6.10 Usage Counter Update Packet (Sub-Data Type 7)

The message is generated per request (Sub-Data type 7, as described in the Command Chanel definition of this document) or as a periodical update. In the latter case, it is merged with the GPS time/location stamp (Sub-Data type 4).

#### 2.6.10.1 Message Structure

| Byte Number |                 | Data |
|-------------|-----------------|------|
| Ν           | Sub-Data type   | 7    |
| N+1         | Sub-Data Length | 9    |





| N+2          | Spare           | Spare             |
|--------------|-----------------|-------------------|
| (N+3)-(N+6)  | Counter 1 value | See the following |
| (N+7)-(N+10) | Counter 2 value |                   |

#### **Counters Data Field Definition**

| Counter 2 value, minutes (0-<br>0xFFFFFF) |          | Counter 2<br>input's<br>number | Counter 1 value, minutes (0-<br>0xFFFFFF) |          | Counter 1<br>input's<br>number |          |          |
|-------------------------------------------|----------|--------------------------------|-------------------------------------------|----------|--------------------------------|----------|----------|
| Byte N+10                                 | Byte N+9 | Byte N+8                       | Byte N+7                                  | Byte N+6 | Byte N+5                       | Byte N+4 | Byte N+3 |

### **Input's Numbers Definition**

| Hardware: Olympic                      |                      |  |  |
|----------------------------------------|----------------------|--|--|
| Input's name                           | Input's number (dec) |  |  |
| Shock                                  | 1                    |  |  |
| Ignition                               | 5                    |  |  |
| Panic                                  | 6                    |  |  |
| Ext. Alarm Triggered                   | 12                   |  |  |
| Ext. Alarm Armed                       | 13                   |  |  |
| Hardware: Compact CAN                  | -                    |  |  |
| Input's name                           | Input's number (dec) |  |  |
| Door                                   | 0                    |  |  |
| Shock                                  | 1                    |  |  |
| Ignition                               | 5                    |  |  |
| Panic                                  | 6                    |  |  |
| Hardware: Compact Security/6 inp. flee | et                   |  |  |
| Input's name                           | Input's number (dec) |  |  |
| Door                                   | 0                    |  |  |
| Unlock2 Input                          | 1                    |  |  |
| Ignition                               | 5                    |  |  |
| Panic                                  | 6                    |  |  |
| Unlock Input                           | 7                    |  |  |





| Lock Input                 | 10                   |  |
|----------------------------|----------------------|--|
| Hardware: Compact Fleet/LC |                      |  |
| Input's name               | Input's number (dec) |  |
| Door                       | 0                    |  |
| Shock                      | 1                    |  |
| Ignition                   | 5                    |  |
| Panic                      | 6                    |  |
| COM RTS (pin 11)           | 7                    |  |
| Hardware: 370-50           |                      |  |
| Input's name               | Input's number (dec) |  |
| Door                       | 0                    |  |
| Shock                      | 1                    |  |
| Hood                       | 2                    |  |
| Volume                     | 3                    |  |
| Ignition                   | 5                    |  |
| Panic                      | 6                    |  |
| GP1                        | 7                    |  |
| Arm                        | 8                    |  |
| Disarm                     | 9                    |  |
| Odometer                   | 11                   |  |
| Unlock                     | 12                   |  |
| Lock                       | 13                   |  |
| Unlock2                    | 14                   |  |
| Hardware: CelloTrack       |                      |  |
| Input's name               | Input's number (dec) |  |
| Tamper Switch              | 0                    |  |
| Push Button                | 1                    |  |
| GP input 1                 | 2                    |  |





| GP input 2                 | 3 |
|----------------------------|---|
| Movement Sensor (Ignition) | 5 |

# 2.6.11 Command Authentication Update (Sub-Data Type 8)

This packet is sent as a response to an Authentication Table Update command. Refer to the description of Command Channel

| Description                     | Value                |                      |  |
|---------------------------------|----------------------|----------------------|--|
| Sub-data type                   | 0×08                 |                      |  |
| Sub-data length                 | 0x09                 |                      |  |
| Spare                           | 0x00                 |                      |  |
| 8 bytes of authentication table | Auth. Table Index 0  | Auth. Table Index 1  |  |
|                                 | Auth. Table Index 14 | Auth. Table Index 15 |  |

# 2.6.12 **Neighbor list of the serving GSM cell (Sub-Data Type 9)**

This packet will be sent:

- Passively, as a response to a Neighbor list of the serving GSM cell request. In this case the packet will be sent using the same communication transport as the request.
- Actively, if enabled in unit's configuration, separately for home and roam GSM networks, on address dec 202 and 204 respectively, bits 6 and 7.

| Description          |         | Value                                                               |                                                |  |
|----------------------|---------|---------------------------------------------------------------------|------------------------------------------------|--|
| Sub-data type        |         | 0x09                                                                |                                                |  |
| Sub-data length      |         | 0x35                                                                |                                                |  |
| Spare                |         | 0×00                                                                |                                                |  |
|                      | seconds | 0-59                                                                | The UTC time is logged upon Cell               |  |
| estamp - UTC<br>time | minutes | 0-59                                                                | ID (AT+MONI) query (not the transmission time) |  |
|                      | hours   | 0-23                                                                |                                                |  |
|                      | day     | 1-31                                                                |                                                |  |
|                      | month   | 1-12                                                                |                                                |  |
| Time                 | year    | Actual year minus 2000<br>– 1 byte (e.g. value of<br>7 = year 2007) |                                                |  |
| n N                  | BSIC    | Base station identification code. The data can be request           |                                                |  |





|               |              | from the Telit modem using #MONI=7, Enfora using an                                                                     |  |  |
|---------------|--------------|-------------------------------------------------------------------------------------------------------------------------|--|--|
|               |              | engineering mode Ar commands.                                                                                           |  |  |
|               | LAC (LSB)    | Localization area code                                                                                                  |  |  |
|               | LAC (MSB)    |                                                                                                                         |  |  |
|               | CellID (LSB) | Cell Id                                                                                                                 |  |  |
|               | CellID (MSB) |                                                                                                                         |  |  |
|               | Power        | Received signal strength in dBm (hex); the sign is not<br>saved, this value is always representing a negative<br>number |  |  |
|               | bsic         | Base station identification code                                                                                        |  |  |
| ell 1         | LAC (LSB)    | Localization area code                                                                                                  |  |  |
| orc           | LAC (MSB)    |                                                                                                                         |  |  |
| hbo           | CellID (LSB) | Cell Id                                                                                                                 |  |  |
| Neig          | CellID (MSB) |                                                                                                                         |  |  |
|               | Power        | Received signal strength in dBm (hex)                                                                                   |  |  |
|               | bsic         | Base station identification code                                                                                        |  |  |
| ell 2         | LAC (LSB)    | Localization area code                                                                                                  |  |  |
| L<br>U<br>U   | LAC (MSB)    |                                                                                                                         |  |  |
| hbc           | CellID (LSB) | Cell Id                                                                                                                 |  |  |
| Veig          | CellID (MSB) |                                                                                                                         |  |  |
|               | Power        | Received signal strength in dBm (hex)                                                                                   |  |  |
|               |              |                                                                                                                         |  |  |
|               | bsic         | Base station identification code                                                                                        |  |  |
| 9 II 6        | LAC (LSB)    | Localization area code                                                                                                  |  |  |
| L C           | LAC (MSB)    |                                                                                                                         |  |  |
| oqų           | CellID (LSB) | Cell Id                                                                                                                 |  |  |
| leig          | CellID (MSB) |                                                                                                                         |  |  |
| 2             | Power        | Received signal strength in dBm (hex)                                                                                   |  |  |
|               | 00           | Zero Padding to fulfill the 56 bytes assigned for single                                                                |  |  |
| Zero<br>dding | 00           |                                                                                                                         |  |  |
| Pa Pa         | 00           |                                                                                                                         |  |  |





| 00 |  |
|----|--|
|    |  |









# 2.6.13 Maintenance Server Platform Manifest (Sub-Data Type A)

Periodically (or upon command from the CCC) the unit connects to a maintenance server in order to check for the latest firmware and /or programming update. Auto connection to the maintenance server can be enabled upon power up and upon firmware upgrade.

Upon connection the unit generates a packet which is described below. An acknowledge (OTA message type 4) is received with a timeout defined in the EEPROM. If this is not the case, the platform manifest should be resent.

If the unit cannot establish a connection to the maintenance server while the GPRS is available, it uses the dial up retry algorithm defined in the EEPROM Allocation (refer to the Anti-Flooding section).

If all the retries fail, the unit ceases to try and reconnects to an operational server (instead of entering Anti-Flooding, as it would do while connected to an operational server).

| Byte<br>number | Description                                        | Value                                                                                                                                                             |  |
|----------------|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1-14           | Standard header (as described above)               |                                                                                                                                                                   |  |
| 15             | Sub-data type                                      | 0×0A                                                                                                                                                              |  |
| 16             | Sub-data length                                    | 0x22                                                                                                                                                              |  |
| 17             | Processor family identifier                        | 0x01 - PIC18Fx520/620/720<br>0x02 - PIC18Fx621/525<br>0x03 - PIC18Fx527/622/627/722<br>(x=6/8)                                                                    |  |
| 18             | Hardware interface and peripherals identifier      | 0x01 – 40/44 pin micro, peripherals<br>as per family.<br>0x02 – 64 pin micro, peripherals as<br>per family.<br>0x03 – 80 pin micro, peripherals as<br>per family. |  |
| 19             | Size of program memory (in 1024 words units) (LSB) | In 1024 words                                                                                                                                                     |  |
| 20             | Size of program memory (in 1024 words units) (MSB) |                                                                                                                                                                   |  |
| 21-22          | Size of volatile memory (LSB)                      | Divided by 128 bytes and rounded                                                                                                                                  |  |
|                | Size of volatile memory (MSB)                      | up/down to closest integer                                                                                                                                        |  |
| 23-24          | Size of internal non-volatile memory (LSB)         | Divided by 128 bytes and rounded up/down to closest integer                                                                                                       |  |
|                | Size of internal non-volatile memory (MSB)         |                                                                                                                                                                   |  |





| Byte<br>number | Byte Description<br>number                                 |                                                                                                                                                                                  | Value                                                         |                                                       |
|----------------|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------|
| 25-26          | Size of external non-volatile memory (LSB)                 | 1024 words units                                                                                                                                                                 |                                                               |                                                       |
|                | Size of external non-volatile memory (MSB)                 |                                                                                                                                                                                  |                                                               |                                                       |
| 27             | External non-volatile memory type                          | 0x01 – I2C generic NVRAM (most<br>EEPROMs).<br>0x02 – SPI generic NVRAM.                                                                                                         |                                                               |                                                       |
| 28             | Hardware Version                                           | Same as reported in OTA status                                                                                                                                                   |                                                               |                                                       |
| 29-30          | Reprogramming facility identifier<br>(LSB)                 | 0x01                                                                                                                                                                             |                                                               |                                                       |
|                | Reprogramming facility identifier<br>(MSB)                 | 0×00                                                                                                                                                                             |                                                               |                                                       |
| 31-32          | Script language version (LSB)                              | 0x01<br>0x00                                                                                                                                                                     |                                                               |                                                       |
|                | Script language version (MSB)                              |                                                                                                                                                                                  |                                                               |                                                       |
| 33-34          | Current Firmware ID (LSB)                                  | Note that this is not a descriptor of                                                                                                                                            |                                                               | descriptor of                                         |
|                | Current Firmware ID (MSB)                                  | the firmware platform per se, but<br>rather a descriptor of the actual<br>firmware running on the platform.<br>However, it is a valuable field when a<br>re-flash is considered. |                                                               |                                                       |
| 35-36          | Current PL ID (LSB)                                        | Infrastructure only, currently not                                                                                                                                               |                                                               |                                                       |
|                | Current PL ID (MSB)                                        | supported                                                                                                                                                                        |                                                               |                                                       |
| 37-44          | International mobile subscriber identity of the SIM (IMSI) | Reference to GSM 07.07, 15 chars maximum                                                                                                                                         |                                                               |                                                       |
| 45-47          | Modem's firmware revision                                  | * See the following description                                                                                                                                                  |                                                               |                                                       |
| 48             | Maintenance Configuration                                  | Spare                                                                                                                                                                            | Firmware<br>upgrade<br>enabled<br>Disabled – 0<br>Enabled - 1 | Programming<br>enabled<br>Disabled – 0<br>Enabled - 1 |
|                |                                                            | Bits 2-7                                                                                                                                                                         | Bit 1                                                         | Bit 0                                                 |
| 49-50          | Spare                                                      |                                                                                                                                                                                  |                                                               |                                                       |
| 51             | Checksum                                                   |                                                                                                                                                                                  |                                                               |                                                       |

#### Modem's Revision Stamp in the "Maintenance Platform Manifest" Packet





Bytes 45-47 of the Maintenance Platform Manifest contain the value of the modem's revision. The modem type is recorded in a hardware byte. This field provides an additional definition.

| Modem's type extension<br>(Extra byte, addition to the<br>3MSBits in the hardware<br>byte of message type 0) | Modem revision ID, as presented in the following table | Reserved (sent as zero) |
|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------|
| Byte 47                                                                                                      | Byte 46                                                | Byte 45                 |

#### Modem revision ID

| ID (Dec) | Revision              | Modem      |
|----------|-----------------------|------------|
| 0        | Unknown               | All        |
| 1        | 0.7.6                 | Enfora II  |
| 2        | 0.7.8                 |            |
| 3,4      | reserved              |            |
| 5        | 1.0.5                 | Enfora III |
| 6        | 6.1.1 (Beta)          |            |
| 7        | 1.1.1PKG30            |            |
| 8        | 1.1.1PKG41            | -          |
| 9        | D31.1.2 PKG47         | -          |
| 10       | D41.1.2 PKG47         | -          |
| 11       | D10.1.1.2             |            |
| 12-20    | reserved              | -          |
| 21       | 7.02.002              | Telit II   |
| 22       | 7.02.100              | -          |
| 23       | 7.02.002              | Telit III  |
| 24       | 7.02.003              |            |
| 25       | 7.02.004              | -          |
| 26       | 7.03.000              | -          |
| 27       | 7.03.030 (Automotive) |            |
| 28       | 7.03.002              |            |
| 29       | 7.03.032              |            |





| ID (Dec) | Revision              | Modem           |
|----------|-----------------------|-----------------|
| 30       | 10.00.033             | Telit V2        |
| 31       | Reserved              |                 |
| 32       | 10.00.035             |                 |
| 33       | 10.00.016             |                 |
| 34-40    | reserved              |                 |
| 41       | GLM-4-0610-000        | Motorola 24L    |
| 41-50    | Reserved for Motorola |                 |
| 51       | 01.000                | Cinterion       |
| 52-70    | reserved              |                 |
| 71       |                       | Telit HE910-G   |
| 72       |                       | Telit HE910-NAD |
| 73       |                       |                 |
| 74       |                       |                 |
| 75       |                       |                 |
| 76       |                       |                 |
| 77       |                       |                 |
| 78-255   | reserved              |                 |




# 2.6.14 Message Forwarded from Keyboard (Sub Data type 0xB)

This message is forwarded from SPC Keyboard. Refer to 1-Wire Interface Protocol. 58 bytes, which are actually logged are marked by the " $\diamond$ " icon (58 bytes), the rest are added at delivery time.

| Byte no. | Description                                                    | Containing                                                                                                                                                                                 |
|----------|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1        | System code, byte 1                                            | ASCII "M"                                                                                                                                                                                  |
| 2        | System code, byte 2                                            | ASCII "C"                                                                                                                                                                                  |
| 3        | System code, byte 3                                            | ASCII "G″                                                                                                                                                                                  |
| 4        | System code, byte 4                                            | ASCII "P"                                                                                                                                                                                  |
| 5        | Message type                                                   | 9                                                                                                                                                                                          |
| 6        | Unit's ID (total 32 bits)                                      | Same as in Msg type 0                                                                                                                                                                      |
| 7        |                                                                |                                                                                                                                                                                            |
| 8        |                                                                |                                                                                                                                                                                            |
| 9        |                                                                |                                                                                                                                                                                            |
| 10       | Communication Control field                                    |                                                                                                                                                                                            |
| 11       |                                                                |                                                                                                                                                                                            |
| 12◊      | Message Numerator                                              |                                                                                                                                                                                            |
| 13◊      | Packet Control Field                                           | 0x00                                                                                                                                                                                       |
| 14◊      | Total Data length                                              | 0d55                                                                                                                                                                                       |
| 15◊      | Sub-Data Type                                                  | В                                                                                                                                                                                          |
| 16◊      | Sub-Data Length                                                | 0d26                                                                                                                                                                                       |
| 17\$     | Length of actual data<br>forwarded from 1-Wire<br>channel      | Length of Message code +<br>Specific message code data<br>In case of response to<br>Keyboard ID request - 6                                                                                |
| 18◊      | Spare                                                          |                                                                                                                                                                                            |
| 19-42◊   | Message code + Specific<br>message code data + Zero<br>padding | Refer to 1-Wire Interface<br>Protocol<br>The data length is normally<br>shorter than 24 bytes; the<br>extra bytes are zero<br>padded.<br>In case of response to<br>Keyboard ID request the |





| Byte no. | Description                                                             | Containing                                                           |
|----------|-------------------------------------------------------------------------|----------------------------------------------------------------------|
|          |                                                                         | bytes 19-24 contains the<br>Keyboard ID, the rest is<br>zero padding |
| 43◊      | Sub-data Type                                                           | 4                                                                    |
| 44◊      | Sub-data Length                                                         | 0d25                                                                 |
| 45◊      | Location status (flags)                                                 | See the following                                                    |
| 46◊      | Mode 1 (from GPS)                                                       | 4 in Wireless protocol.                                              |
| 47�      | Mode 2 (from GPS)                                                       |                                                                      |
| 48◊      | Number of satellites used (from GPS)                                    |                                                                      |
| 49-52◊   | Longitude                                                               |                                                                      |
| 53-56�   | Latitude                                                                |                                                                      |
| 57-59�   | Altitude                                                                |                                                                      |
| 60-61�   | Ground speed                                                            | -                                                                    |
| 62-63◊   | Speed direction (true course)                                           | -                                                                    |
| 64�      | UTC time – seconds                                                      | -                                                                    |
| 65◊      | UTC time – minutes                                                      | -                                                                    |
| 66◊      | UTC time – hours                                                        |                                                                      |
| 67�      | UTC date – day                                                          | -                                                                    |
| 68�      | UTC date - month                                                        | -                                                                    |
| 69�      | UTC date - year minus 2000<br>- 1 byte (e.g. value of 7 =<br>year 2007) |                                                                      |
| 70       | Check Sum                                                               |                                                                      |

# 2.6.15 **Compressed vector change report (Sub-Data Type D)**

Note this is supported by Cello only, and will NEVER be generated as real-time or distress event, only as logged event.

If a corresponding functionality is enabled in programming the compressed vector change data will be sent by the unit in the following cases:

• Upon detection of 6th vector change detection occurrence - in this case the system will generate a Msg type 9 containing all 6 vector change detection occurrences.

Wireless Communication Protocol 31p

Page 74 of 113





- Timeout if at least one vector change event is stored in unit's memory and no other vector changes were generated by the unit during the pre-programmed period, the system will generate Msg type 9 containing all previous vector change detection occurrences.
- Upon Stop Msg type 9 containing all previous vector change detection occurrences (if any) will be generated immediately upon stop report.
- Upon reset command the Msg type 9 containing all previous vector change detection occurrences (if any) will be generated.

| Byte no. | Description                                 |               | Containing  |  |
|----------|---------------------------------------------|---------------|-------------|--|
| 1        | System code, byte 1                         |               | ASCII "M″   |  |
| 2        | System code, byte 2                         |               | ASCII "C"   |  |
| 3        | System code, byte 3                         |               | ASCII "G″   |  |
| 4        | System code, byte 4                         |               | ASCII "P″   |  |
| 5        | Message type                                |               | 9           |  |
| 6        | Unit's ID (total 32 bits)                   |               | As usual    |  |
| 7        | _                                           |               |             |  |
| 8        |                                             |               |             |  |
| 9        |                                             |               | _           |  |
| 10       | Communication Control field                 |               |             |  |
| 11       |                                             |               |             |  |
| 12♠      | Message Numerator                           |               |             |  |
| 13♠      | Packet Control Field                        |               | 0×00        |  |
| 14•      | Total Data length                           |               | 0d55        |  |
| 15♠      | Sub-Data Type                               |               | 0x0D        |  |
| 16♠      | Sub-Data Length                             |               |             |  |
| 17♠      | Number of included vector change detections |               |             |  |
| 18-21    |                                             | vector change | detection 1 |  |





| Byte no.       | Description               |   | Containing |
|----------------|---------------------------|---|------------|
|                | Longitude                 |   |            |
| 22-25          |                           |   |            |
|                | Latitude                  | - |            |
| 26-28          | Odometer                  | _ |            |
| 29♠            | Spare                     | _ |            |
| 30♠            | Course                    |   |            |
| 31♠            | Speed                     |   |            |
| 32-34♠         | Time                      |   |            |
| 35-41♠         | vector change detection 2 |   |            |
| 42-48♠         | vector change detection 3 | 3 |            |
| 49-55♠         | vector change detection 4 |   |            |
| 56-62♠         | vector change detection 5 |   |            |
| 63-69 <b>≜</b> | vector change detection 6 |   |            |
| 70             | Check Sum                 |   |            |

Each message will contain up to 6 vector change occurrences, while the first one is reported in its full format, the rest are reported as a delta relative to the last point (see full message format on the next page).

Each vector change detection occurrence (except the first one) consumes 8 bytes containing a data of location change from the last vector change (or from the start event), time from the last event and speed.

### Vector change detection 2-6

| Delta Lo<br>(from la<br>cha | ongitude<br>st vector<br>nge) | Delta latitude<br>(from last vector<br>change) |        | Time fro<br>change ( | m vector<br>seconds) | Speed  |
|-----------------------------|-------------------------------|------------------------------------------------|--------|----------------------|----------------------|--------|
| Byte 6                      | Byte 5                        | Byte 4                                         | Byte 3 | Byte 2               | Byte 1               | Byte 0 |

The latitude, longitude and time of the first vector detection will be stored in its full format.

Wireless Communication Protocol 31p

Page 76 of 113





True course of the first location is reported as 8-bit unsigned integer. The conversion to degrees is according the equation below:

 $Course \ [degr] = \frac{Received \ value * 360}{255}$ 

Possible values are 0 to  $2\pi$ .

### Timestamp of the first Vector change

| Minute | s (LSB) | Seconds |       |       |       |       |       |
|--------|---------|---------|-------|-------|-------|-------|-------|
| Bit 7  | Bit 6   | Bit 5   | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |

| Hours (LSB) |       |       |       | Minutes | s (MSB) |       |       |
|-------------|-------|-------|-------|---------|---------|-------|-------|
| Bit 7       | Bit 6 | Bit 5 | Bit 4 | Bit 3   | Bit 2   | Bit 1 | Bit 0 |

| Sp    | are   | Days  |       |       | Hours |       |       |
|-------|-------|-------|-------|-------|-------|-------|-------|
| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |

Delta Longitude and latitude (from last vector change) both are stored as signed integers, in 10-8 radian resolution. Possible values are  $-\pi$  to  $+\pi$  for longitude, or

 $-\frac{\pi}{2}$  to  $+\frac{\pi}{2}$  for latitude.

Time from last vector change is recorded in seconds.

Speed is represented in KM/H.

The reported value of speed may monitor the immediate value of speed recorded upon generation of the message or the maximum value of speed from the last report (as per the configuration). Byte 10, bit 6 of the message is monitoring the actual reported type.

The 58 bytes which are actually logged are marked by the " $\bullet$ " icon, the rest are added at delivery time.

If there is less than 6 vector change detections in this message, the unit fulfills unused bytes of missing occurrences by zeros. The message length will remain constant.

### Number of included vector change detection

|       |       |       |       |       | Num<br>vector c | ber of incl<br>hange de | luded<br>tections |
|-------|-------|-------|-------|-------|-----------------|-------------------------|-------------------|
| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2           | Bit 1                   | Bit 0             |





# 2.6.16 Modular Platform Manifest (Sub. Data 0x12)

Note that this is supported by Cellocator Cello only.

Generated as a reply to a Modular Platform Manifest request (see Command channel)

| Byte                                | Description                      |
|-------------------------------------|----------------------------------|
| Sub Data Type                       | 0x12                             |
| Sub Data Length                     | Variable, depends on the content |
| Field 1 - Identifier                |                                  |
| Field 1 – Length of payload         |                                  |
| Field 1 - Payload                   |                                  |
|                                     |                                  |
| Field X - Identifier                | Field 1 - Identifier             |
| Field X – Length of payload (bytes) | Field 1 – Length of payload      |
| Field X - Payload                   | Field 1 - Payload                |

### **Fields definition**

### Processor family identifier

| Field ID - 00 | 0x00- PIC18F6722<br>0x01 - STM32F101RCT6 |
|---------------|------------------------------------------|
|               |                                          |

### Accelerometer identifier

| Field ID - 01 | 0x00 - MMA7260QT<br>0x01 - ST LIS331DL |
|---------------|----------------------------------------|
|               | 0x02 - LIS331DLH (12bit)               |

#### Size of internal non-volatile memory

| Field ID – 02 | Number in kBytes<br>Default 256 (dec) |
|---------------|---------------------------------------|
|               |                                       |

### Amount of non-volatile memory used by application (f.ex. configuration)

| Field ID – 03 | Number in Bytes<br>Default 0 (N.A) |
|---------------|------------------------------------|

#### Size of internal RAM

| Field ID - 04 | Number in kBytes<br>Default – 32 (dec) |
|---------------|----------------------------------------|
|               |                                        |

### Size of external non-volatile memory

| Field ID – 05 | Number in kBytes<br>Default – 512 (dec) |
|---------------|-----------------------------------------|





#### Amount of ext. non-volatile memory used by application (f.ex. configuration)

| Field ID – 06 | Number in kBytes<br>Default – 4096 (dec) |
|---------------|------------------------------------------|
|---------------|------------------------------------------|

#### Size of external RAM

| Field ID – 07 | Number in Bytes<br>Default - 0 (N.A) |
|---------------|--------------------------------------|

#### **Current Firmware ID number**

| Field ID – 08 | Same as in wireless protocol |
|---------------|------------------------------|
|---------------|------------------------------|

#### **Current Hardware ID number**

| Field ID - 09 | Same as in wireless protocol MSG type 0 (without modem field) |
|---------------|---------------------------------------------------------------|
|               |                                                               |

#### Modem type

| Field ID – 0A | 0 Sony/Erickson GR47       |
|---------------|----------------------------|
|               | 1 Enfora Enabler II-G      |
|               | 2 Telit GE864 old retrofit |
|               | 3 Telit GE864              |
|               | 4 Motorola G24             |
|               | 5 Enfora III               |
|               | 6 Telit GE864 Automotive   |
|               | 7 Cinterion BGS3           |

### **Modem firmware**

Field ID – 0B 3 bytes as listed below

Bytes 45-47 of Maintenance Platform Manifest contain the value of modem's revision. The modem type is declared in a hardware byte; this field provides an additional definition.

| Reserved (sent as zero) | Modem revision ID, as per table below | Reserved (sent as zero) |
|-------------------------|---------------------------------------|-------------------------|
| Byte 2                  | Byte 1                                | Byte 0                  |

#### Modem revision ID

| ID (Dec) | Revision     | Modem      |
|----------|--------------|------------|
| 0        | Unknown      | All        |
| 1        | 0.7.6        | Enfora II  |
| 2        | 0.7.8        |            |
| 3,4      | reserved     |            |
| 5        | 1.0.5        | Enfora III |
| 6        | 6.1.1 (Beta) |            |
| 7        | 1.1.1PKG30   |            |
| 8        | 1.1.1PKG41   |            |





| ID (Dec) | Revision               | Modem           |
|----------|------------------------|-----------------|
| 9        | D31.1.2 PKG47          |                 |
| 10       | D41.1.2 PKG47          |                 |
| 11-20    | reserved               |                 |
| 21       | 7.02.002               | Telit II        |
| 22       | 7.02.100               |                 |
| 23       | 7.02.002               | Telit III       |
| 24       | 7.02.003               |                 |
| 25       | 7.02.004               |                 |
| 26       | 7.03.000               |                 |
| 27       | 7.03.030 (Automotive)  |                 |
| 28       | 7.03.002               |                 |
| 29       | 7.03.032               |                 |
| 30       | 10.00.033              | Telit V2        |
| 31       | Reserved               |                 |
| 32       | 10.00.035              |                 |
| 33-40    | reserved               |                 |
| 41       | GLM-4-0610-000         | Motorola 24L    |
| 41-50    | Reserved for Motorola  |                 |
| 51       | 01.000                 | Cinterion       |
| 52-70    | Reserved for Cinterion |                 |
| 71       |                        | Telit HE910-G   |
| 72       |                        | Telit HE910-NAD |
| 73       |                        |                 |
| 74       |                        |                 |
| 75       |                        |                 |
| 76       |                        |                 |
| 77       |                        |                 |
| 78-255   | reserved               |                 |

### **GPS Type**

| Field ID – 0C | 00 -CEL3535<br>01 - CEL1500               |
|---------------|-------------------------------------------|
|               | 02 – CEL1500L<br>03 – CEG-1000 (Internal) |

#### **GPS Firmware**

| Field ID – 0D | String as returned by GPS to revision request command |
|---------------|-------------------------------------------------------|
|               |                                                       |

### First Activation Date/Time

| Field ID - 0E       Byte 5       Byte 4       Byte 3       Byte 2       Byte 1       Byte 0 |
|---------------------------------------------------------------------------------------------|
|---------------------------------------------------------------------------------------------|





| Data length – 6 bytes hour min | sec | day | month | year |
|--------------------------------|-----|-----|-------|------|
|--------------------------------|-----|-----|-------|------|

#### FW. Upgrade Date/Time

| Field ID – 0F         | Byte 5 | Byte 4 | Byte 3 | Byte 2 | Byte 1 | Byte 0 |
|-----------------------|--------|--------|--------|--------|--------|--------|
| Data length – 6 bytes | hour   | min    | sec    | day    | month  | year   |

#### Last Configuration Change Date/Time

| Field ID – 0x10       | Byte 5 | Byte 4 | Byte 3 | Byte 2 | Byte 1 | Byte 0 |
|-----------------------|--------|--------|--------|--------|--------|--------|
| Data length – 6 bytes | hour   | min    | sec    | day    | month  | year   |

#### Firmware name (string)

Field ID – 0x11 String (40 chars max)

# System ID (STM ID in case of STM controller)

| Field ID – 0x12 | 12 bytes hexadecimal                                    |
|-----------------|---------------------------------------------------------|
| Boot Loader ID  |                                                         |
| Field ID – 0x13 | Contains 1 byte indicating Boot Loader's version number |





# 2.6.17 Pulse Counter Measurement Response (Sub. Data 0x14)

Will be sent by the unit as a result of <u>Modular Pulse Counter Measurement request</u> (Sub. Data 0x14)

| Byte no. | Description                 | Containing            |
|----------|-----------------------------|-----------------------|
| 1        | System code, byte 1         | ASCII "M"             |
| 2        | System code, byte 2         | ASCII "C"             |
| 3        | System code, byte 3         | ASCII "G"             |
| 4        | System code, byte 4         | ASCII "P"             |
| 5        | Message type                | 9                     |
| 6        | Unit's ID (total 32 bits)   | Same as in Msg type 0 |
| 7        |                             |                       |
| 8        |                             |                       |
| 9        |                             |                       |
| 10       | Communication Control field |                       |
| 11       |                             |                       |
| 12◊      | Message Numerator           |                       |
| 13◊      | Packet Control Field        | 0x00                  |
| 14◊      | Total Data length           | 0x37                  |
| 15◊      | Sub-Data Type               | 0x14                  |
| 16◊      | Sub-Data Length             | 0d26                  |
| 17◊      | Spare                       |                       |
| 18◊      |                             |                       |
| 19◊      | Liter counter 1             | LSByte                |
| 20◊      |                             |                       |
| 21◊      |                             |                       |

Page 82 of 113





| Byte no. | Description     | Containing |
|----------|-----------------|------------|
| 22◊      |                 | MSByte     |
| 23◊      | Liter Counter 2 | LSByte     |
| 24◊      |                 |            |
| 25◊      |                 |            |
| 26◊      |                 | MSByte     |
| 27◊      | Spare           |            |
| 28◊      |                 |            |
| 29◊      |                 |            |
| 30◊      |                 |            |
| 31◊      |                 |            |
| 32◊      |                 |            |
| 33◊      |                 |            |
| 34◊      |                 |            |
| 35◊      |                 |            |
| 36◊      |                 |            |
| 37◊      |                 |            |
| 38◊      |                 |            |
| 39◊      |                 |            |
| 40◊      |                 |            |
| 41◊      |                 |            |
| 42◊      |                 |            |
| 43◊      | Sub-data Type   | 4          |
| 44◊      | Sub-data Length | 0d25       |
|          |                 |            |





| Byte no. | Description                                                       | Containing                            |
|----------|-------------------------------------------------------------------|---------------------------------------|
| 45◊      | Location status (flags)                                           | See the following description of sub- |
| 46◊      | Mode 1 (from GPS)                                                 |                                       |
| 47◊      | Mode 2 (from GPS)                                                 |                                       |
| 48◊      | Number of satellites used (from GPS)                              |                                       |
| 49-52◊   | Longitude                                                         |                                       |
| 53-56◊   | Latitude                                                          |                                       |
| 57-59◊   | Altitude                                                          |                                       |
| 60-61◊   | Ground speed                                                      |                                       |
| 62-63◊   | Speed direction (true course)                                     |                                       |
| 64◊      | UTC time – seconds                                                |                                       |
| 65◊      | UTC time – minutes                                                |                                       |
| 66◊      | UTC time – hours                                                  |                                       |
| 67◊      | UTC date – day                                                    |                                       |
| 68◊      | UTC date - month                                                  |                                       |
| 690      | UTC date - year minus 2000 – 1 byte (e.g. value of 7 = year 2007) |                                       |
| 70       | Check Sum                                                         |                                       |

# **Fields definition**

### Litter Counter 1 , Litter Counter 2

The following description is common for both "Litter Counter 1'' and "litter Counter 2'':

4 bytes forming unsigned 32 bits value representing the amount of litters consumed from the last pulse counter reset. The value is a multiplication of the Pulse counter value by the scaling factor value (PL address 2442-2443 for Door input and 2444-2445 for shock input).





Note: Litters are only one example for volume measurement units. Actually the real measurement units are defined by the measuring device and its Fuel volume vs pulses relation.









# **3** Command Channel (Inbound Messages)

# 3.1 Overview

The telemetry channel comprises several kinds of messages, as described below:

- Generic Command Message (message code 0) most commands are sent using this message. This message is always replied to with a status/location message from the target unit (if the command is received successfully). A status/location message, which is sent as a response to a command, has one of its flags (the message initiative flag) raised to indicate a reply.
- Programming Command (message code 1) this message provides OTA programming capabilities, and is always replied to with a programming status message from the target unit, when received correctly.
- Acknowledge Message (Message Code 4) sent by central control to verify reception of outbound status, telemetry or transparent data messages.
- Forward Data Command (message code 5) this message allows the sending of data to the terminal attached to the unit.
- Modular message request (Message code 9) this message is designed to request the unit to send types of data, defined in Modular Message packet like CAN bus sensors, Cell ID, debug data, and more. The description of the message is outside the scope of this document.
- Self Re-flash Chunks (Message code 10) a message that forwards firmware file data chunks for the self-re-flash process of the unit. The Self re-flash process description is outside of the scope of the current document (see Self Re-flash Appendix for more details).

# 3.2 Generic Command Message Definition

# 3.2.1 General Details

The generic command message is the main command interface to the Cellocator unit. The message is defined to have a constant length (25 bytes), regardless of the actual command that is being sent. All fields are defined and when not being used by a certain command, they still must be sent (containing a zero value).

# 3.2.2 Message Ingredients

Message header

- System code 4 bytes
- Message type 1 byte
- Destination Unit ID 4 bytes
- Command Numerator Field

Authentication code – 4 bytes

#### Command data

- Command code field 1 byte repeats twice
- 1<sup>st</sup> Command data field 1 byte repeats twice
- 2<sup>nd</sup> Command data field 1 byte repeats twice

Wireless Communication Protocol 31p

Page 87 of 113





### • 4 bytes reserved for future use

Error detection code – 8-bit additive checksum (excluding system code)

# 3.2.3 Byte-Aligned Table

| 1  | System code, byte 1 – ASCII "M"                                        |
|----|------------------------------------------------------------------------|
| 2  | System code, byte 2 – ASCII "C"                                        |
| 3  | System code, byte 3 – ASCII "G"                                        |
| 4  | System code, byte 4 – ASCII "P"                                        |
| 5  | Message type byte (a value of 0 for a generic command message)         |
| 6  | Target Unit's ID (total 32 bits)                                       |
| 7  |                                                                        |
| 8  |                                                                        |
| 9  |                                                                        |
| 10 | Command Numerator Field                                                |
| 11 | Authentication Code                                                    |
| 12 |                                                                        |
| 13 |                                                                        |
| 14 |                                                                        |
| 15 | Command code field                                                     |
| 16 | Command code field (repetition)                                        |
| 17 | 1 <sup>st</sup> Command data field                                     |
| 18 | 1 <sup>st</sup> Command data field (repetition)                        |
| 19 | 2 <sup>nd</sup> Command data field                                     |
| 20 | 2 <sup>nd</sup> Command data field (repetition)                        |
| 21 | Command Specific Data field                                            |
| 22 |                                                                        |
| 23 |                                                                        |
| 24 |                                                                        |
| 25 | Error detection code – 8-bit additive checksum (excluding system code) |





# 3.2.4 Detailed Per-Field Specifications

### 3.2.4.1 System Code

The same system code constant that is sent on every message – ASCII "M", "C", "G", "S" or "M", "C", "G", "S", in this order.

### 3.2.4.2 Message Type

Message type field for generic command messages contains a zero value.

# 3.2.4.3 Target Unit's ID

This field should contain the unique unit ID of the target Cellocator unit. The unit ignores all received commands that do not contain the appropriate unit ID number.

### 3.2.4.4 Command Numerator Field

This field should contain the number of the command. This number appears in the "Message numerator" field in the unit's reply message, enabling the user to easily distinguish between acknowledged commands and un-acknowledged ones.

### 3.2.4.5 Authentication Code

This field contains a 4-byte unique authentication code, which is verified by the unit, in order to provide protection against unapproved command attempts (from fw27p). For example: an attempt to change the traffic destination IP by unauthorized personnel.

If the code is not verified as authentic – the unit will not perform / acknowledge the command.

The feature should be switched on in the unit's configuration (refer to Programming Manual for more details). The feature is switched off by default.

The 4 bytes authentication code is generated as a function of two variables:

- Unit's ID
- 8 bytes Auth Table, stored in the EEPROM of the unit and concurrently in the Communication Center application (refer to Modular Message Definition for modification instructions to this table).

The OTA Auth. table modification will be only be accepted by the unit if the Command Authentication feature is **DISABLED**.

The following are default values of the Auth. table.

| Index | 0 | 1  | 2 | 3 | 4  | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
|-------|---|----|---|---|----|---|---|---|---|---|----|----|----|----|----|----|
| Value | 2 | 15 | 7 | 9 | 12 | 1 | 4 | 6 | 8 | 3 | 11 | 14 | 0  | 5  | 10 | 13 |





# 3.2.4.6 Command Code

As the generic command message mold is relevant for all kinds of commands, it is necessary to specify the actual command that is desired. Each different command is therefore assigned a unique command code, which is used in the command code field, to specify the command to be executed.

See the Commands table for command codes.

# **3.2.4.7** Command Data Fields (1<sup>st</sup> and 2<sup>nd</sup>)

The command data fields contain further information, which is needed by some of the commands.

### **3.2.4.8 Command Specific Data Field**

The command data field (4 bytes) contains additional information, specified separately for each Command Code.

See the Commands table for more information.

| Command<br>Code | Meaning, Data Fields assignments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0×00            | Immediate status request<br>Data field: don't care                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0x02            | Unit state change.<br>Data field value: meaning<br>0x00: Go to Standby<br>0x01: Go to Emergency mode<br>This command sets the unit to start transmitting emergency messages according<br>to the command configuration.<br>The command is sent with two parameters, the interval between each emergency<br>transmission and how many transmissions to send to the operator.<br>If the number of transmissions chosen is 0, the unit sends the emergency<br>transmission constantly.<br>If the time between transmissions is set to 0, the unit sends the emergency<br>transmission according to the pre-programmed definition of the Distress Mode in<br>the EEPROM.<br>The emergency command is meant to emulate the action of a driver pressing on<br>the emergency button. It uses the same mechanism. If an emergency command<br>is sent and the driver simultaneously presses on the emergency button, the<br>emergency function that the driver initiated stops the command sent by the<br>operator and starts its own emergency session |
|                 | Here is an example of the emergency command sent to a unit:<br>Number of distress trans.=2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

# 3.2.4.9 Commands Supported by the Cellocator Unit





| Command<br>Code | Meaning, Data Fields assignments                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 | Time between distress trans. events=5sec                                                                                                                                                                                                                                                                                                                                                                                                   |
|                 | 4D 43 47 50 00 4B 01 00 00 1C 6E DF DD DD 02 02 01 01 00 00 02 05 00 00 7C                                                                                                                                                                                                                                                                                                                                                                 |
|                 | 0x02: Reset                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 | <ul> <li>The following fields will be reset: The "Garmin Enabled", "Garmin<br/>Connected" and GSM hibernation indication bit flags, Message numerator,<br/>Unit's status, Current GSM operator report, Unit's mode of operation, I/O,<br/>Analog inputs, Driver ID /PSP Specific Data/Accelerometer Status, Last<br/>GPS Fix, Number of satellites, Longitude, Latitude, Altitude, Speed,<br/>Course, System time, System date.</li> </ul> |
|                 | <ul> <li>The modem will be re-initialized, the GPRS connection restored.</li> <li>The RAM buffer used for data forwarding will be reset.</li> <li>Configuration parameters will be reloaded from Configuration memory.</li> </ul>                                                                                                                                                                                                          |
|                 | 0x03: Enter Garage Mode (Security unit only)                                                                                                                                                                                                                                                                                                                                                                                               |
|                 | 0x04: Arm Alarm (Security unit only)                                                                                                                                                                                                                                                                                                                                                                                                       |
|                 | 0x05: Release from Emergency mode (does not stop the Siren, only stops emergency transmissions)                                                                                                                                                                                                                                                                                                                                            |
|                 | Command Specific Data field: don't care                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0x03            | Output state change. Data field should contain output change information, according to this table:                                                                                                                                                                                                                                                                                                                                         |
|                 | Data field 1 value: function                                                                                                                                                                                                                                                                                                                                                                                                               |
|                 | 00h / 10h: Siren (off / on)                                                                                                                                                                                                                                                                                                                                                                                                                |
|                 | 01h / 11h: Hood lock (off / on), in 370-x0 only                                                                                                                                                                                                                                                                                                                                                                                            |
|                 | 02h / 12h: SP1W (off / on,) in 370-x0 only                                                                                                                                                                                                                                                                                                                                                                                                 |
|                 | 03h / 13h: Ext Immobilizer (Same output as Gradual Stop) (off / on)                                                                                                                                                                                                                                                                                                                                                                        |
|                 | 04h / 14h: Blinkers (off / on)                                                                                                                                                                                                                                                                                                                                                                                                             |
|                 | 05h / 15h: Standard immobilizer 1 (off / on)                                                                                                                                                                                                                                                                                                                                                                                               |
|                 | 06h / 16h: Speaker phone voltage (off / on), in 370-x0 only                                                                                                                                                                                                                                                                                                                                                                                |
|                 | 07h / 17h: Internal lights (off / on), in 370-x0 only                                                                                                                                                                                                                                                                                                                                                                                      |
|                 | 08h / 18h: LED (off / on), in 370-x0 only                                                                                                                                                                                                                                                                                                                                                                                                  |
|                 | 09h / 19h: General Output (off / on), in 370-x0 only                                                                                                                                                                                                                                                                                                                                                                                       |
|                 | 0Ah / 1Ah: Windows (off / on), in 370-x0 only                                                                                                                                                                                                                                                                                                                                                                                              |
|                 | 0Bh / 1Bh: Stop Light (off / on), in 370-x0 only                                                                                                                                                                                                                                                                                                                                                                                           |
|                 | 0Ch / 1Ch: Buzzer (off / on), in 370-x0 only                                                                                                                                                                                                                                                                                                                                                                                               |
|                 | 0Eh: Lock (performs pulse), in 370-x0 and Olympic modifications only                                                                                                                                                                                                                                                                                                                                                                       |
|                 | 0Fh: Unlock (performs pulse), ), in 370-x0 and Olympic modifications only                                                                                                                                                                                                                                                                                                                                                                  |
|                 | Data field 2 and 2 bytes of Command Specific Data field:                                                                                                                                                                                                                                                                                                                                                                                   |
|                 | Contain time of the output activation with one second resolution. Value of 0                                                                                                                                                                                                                                                                                                                                                               |





| Command<br>Code | Meaning, Data Fields assignments                                                                                                                                                                                                                                                                                                         |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 | cause permanent output change.                                                                                                                                                                                                                                                                                                           |
|                 | Example: Activate Siren for 5 minutes (300 seconds).                                                                                                                                                                                                                                                                                     |
|                 | MCGP 00 ID ID ID ID 00 00 00 00 00 03 03 10 10 2C 2C 01 01 00 00 CS                                                                                                                                                                                                                                                                      |
|                 | Nested output activation: If the MSBit of the 3rd byte of command specific data<br>field is set, the command will be executed only after the vehicle stops, e.g. after<br>Ignition off or after 10 (by default) valid GPS packets showing speed lower than<br>1 km/h).<br>Example:<br>Activate Siren Nested for 5 minutes (300 seconds). |
|                 | MCGP 00 ID ID ID ID 00 00 00 00 00 03 03 10 10 2C 2C 01 01 80 00 CS                                                                                                                                                                                                                                                                      |
| 0x04            | Disable Active Transmissions. This command will control the corresponding bit in the unit's configuration (address 6, bit 1) and immediately stop or restore active transmissions generated by the end unit. The existing GPRS session will be disconnected upon "disable command" or restored upon "Enable command". Data field:        |
|                 | 0 - Disable active transmissions                                                                                                                                                                                                                                                                                                         |
|                 | 1 – Enable active transmissions                                                                                                                                                                                                                                                                                                          |
|                 | Command Specific Data field: don't care                                                                                                                                                                                                                                                                                                  |
|                 |                                                                                                                                                                                                                                                                                                                                          |
| 0x05            | Tracking control command (Based on Time Events). Data field: zero to stop<br>tracking, non zero sets the resolution of time events and immediately<br>implements it. Refer to Programming Manual for values.                                                                                                                             |
|                 | Command Specific Data field: don't care                                                                                                                                                                                                                                                                                                  |
| 0x06            | Alarm Cadence Control command (supported only by CelloAR unit)<br>Data field $1 - 1'$ to activate, '0' to deactivate.                                                                                                                                                                                                                    |
|                 | Data field 2 – don't care.                                                                                                                                                                                                                                                                                                               |
| 0x07            | Commence gradual engine stop (PWM Immobilizer - from 100% to 0% duty cycle). Data field must contain zero (a non-zero value stops Immobilizer).<br>Command Specific Data field: don't care                                                                                                                                               |
|                 | Initiate CSD session                                                                                                                                                                                                                                                                                                                     |
| 0,000           | Data field: don't care                                                                                                                                                                                                                                                                                                                   |
| 0x0D            | Erase tracking Log from EEPROM memory                                                                                                                                                                                                                                                                                                    |
|                 | Data Heiu: uon t care                                                                                                                                                                                                                                                                                                                    |
| 0x0E            | Reset GPS receiver                                                                                                                                                                                                                                                                                                                       |
|                 | Data field:                                                                                                                                                                                                                                                                                                                              |
|                 | a) zero for standard reset (by On/Off pin)                                                                                                                                                                                                                                                                                               |
|                 | b) $1st = 0x5A$                                                                                                                                                                                                                                                                                                                          |
|                 | 2nd =0xA5                                                                                                                                                                                                                                                                                                                                |





| Command<br>Code | Meaning, Data Fields assignments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                    |                          |  |  |  |  |  |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------|--|--|--|--|--|
|                 | For Factory GPS reset command. Note, that the unit can (configurable) perform GPS reset automatically in the following cases:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                    |                          |  |  |  |  |  |
|                 | <ol> <li>Standard reset (by On/Off pin) on ignition off.</li> <li>If the GPS is communicating, but not navigating and MODE1=0, MODE2=16 for 10 minutes the unit performs a factory GPS reset.</li> <li>If the GPS is not communicating, or communicating but not navigating and MODE1≠0, MODE2≠16 for 15 minutes the unit performs standard GPS reset.</li> <li>If same condition as in item 3 remains true for the next 15 minutes the unit performs a factory GPS reset.</li> </ol>                                                                                                                                                                                      |                                    |                          |  |  |  |  |  |
| 0x0F            | Lock /Unlock sequence detection learn (for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | · Security unit's only)            |                          |  |  |  |  |  |
|                 | Data field value: Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                    |                          |  |  |  |  |  |
|                 | 00h: Learn Lock sequence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                    |                          |  |  |  |  |  |
|                 | 01h: Learn Unlock sequence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                    |                          |  |  |  |  |  |
|                 | 02h: Learn additional unlock sequence                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                    |                          |  |  |  |  |  |
|                 | FFh: Erase learned sequences from memor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ry                                 |                          |  |  |  |  |  |
|                 | Command Specific Data field: don't care                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                    |                          |  |  |  |  |  |
| 0x10            | <ul> <li>Force GPS energizing (Not supported by Cello family)</li> <li>The command allows maintaining GPS activated, regardless of hibernation logic.</li> <li>Warning: Note that only GPS is affected by this command! If GPS is forced active, there is no way to send a command to revert the GPS back to automatic behavior while communication is down (due to the hibernation mask or due to shutdown of the modem as a result of the full hibernation).</li> <li>1st + 2nd command data fields: <ul> <li>A value of 1 (one) to force energizing of GPS.</li> <li>A value of 0 (zero) for automatic GPS behavior (according to normal logic).</li> </ul> </li> </ul> |                                    |                          |  |  |  |  |  |
| 0x12            | Connect to server (from FW28)<br>0 – Main server<br>1 – Secondary server (provisioning)<br>2 – Maintenance Server                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                    |                          |  |  |  |  |  |
| 0x13            | Reserved for manufacturer use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                    |                          |  |  |  |  |  |
| 0x14            | Calibrate frequency counters<br>Data field 1 contains description of the cali                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ibration type:                     |                          |  |  |  |  |  |
|                 | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Source type                        | Calibrated input         |  |  |  |  |  |
|                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 – GP Freq.<br>(RPM)<br>1 – Speed | 0 – pin 14<br>1 – pin 15 |  |  |  |  |  |





| Command<br>Code | Meaning, Data Fields assignments  |                                                                                                                 |               |          |          |          |                     |                     |  |
|-----------------|-----------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------|----------|----------|----------|---------------------|---------------------|--|
|                 | Bit 7                             | Bit 6                                                                                                           | Bit 5         | Bit 4    | Bit 3    | Bit 2    | Bit 1               | Bit 0               |  |
|                 | Data fie                          | eld 2:                                                                                                          |               |          |          |          |                     |                     |  |
|                 | • In c<br>10%                     | ase of (<br>%)                                                                                                  | GP Frec       | luency   | contair  | ns perce | ent of maximum engi | ne load (i.e 10 for |  |
|                 | <ul> <li>In c<br/>valu</li> </ul> | ase of succession and states and s | speed -<br>). | - requir | ed dist  | ance in  | hundred's meters (r | ecommended          |  |
|                 | Comma                             | and Spe                                                                                                         | cific Da      | ta fielo | ł        |          |                     |                     |  |
|                 |                                   |                                                                                                                 | N/A           |          |          |          |                     |                     |  |
| 0x15            | Control<br>(pin 14                | of tran<br>)).                                                                                                  | sparen        | t mode   | over C   | COM (in  | dependent from cont | rol by Door input   |  |
|                 | Comma                             | and ID (                                                                                                        | Dx15          |          |          |          |                     |                     |  |
|                 | Data fie                          | eld 1 co                                                                                                        | ntains        | action   | code:    |          |                     |                     |  |
|                 |                                   |                                                                                                                 | 0 - 0         | deactiv  | ate, 1-  | activat  | e                   |                     |  |
|                 | Data fie                          | eld 2 co                                                                                                        | ntains        | activati | ion time | e (in se | conds)              |                     |  |
|                 |                                   |                                                                                                                 | 1 to          | 255 se   | conds,   | 0 - per  | manent activation   |                     |  |
|                 | If active                         | ation by                                                                                                        | / Door        | input (j | pin 14)  | is enat  | oled:               |                     |  |
|                 |                                   |                                                                                                                 | The OT        | A com    | mand o   | verwrit  | es input setting.   |                     |  |
| 0x16            | Query o                           | connect                                                                                                         | ed trail      | er ID    |          |          |                     |                     |  |
|                 | Data fie                          | eld don'                                                                                                        | 't care.      |          |          |          |                     |                     |  |

# **3.3 Programming Command Definition**

# 3.3.1 Message Ingredients

The programming command has a predefined length of 34 bytes. It contains the following data (listed in the actual transmitted order):

Message header

- System code 4 bytes
- Message type 1 byte
- Target Unit's ID 4 bytes
- Command Numerator Field

Authentication code – 4 bytes

Memory data

- Block code 1 byte
- Programming "masking" bitmap 2 bytes
- Block data 16 bytes

Error detection code – 8-bit additive checksum (excluding system code)

Wireless Communication Protocol 31p

Page 94 of 113





# 3.3.2 **Detailed Per-Field Specifications**

### 3.3.2.1 Message Header

Identical to Message header of Command type 0, except the Message type field sent as 1 (one).

### 3.3.2.2 Block Code

OTA (over the air) parameter programming is done in blocks. The entire EEPROM parameter memory is partitioned to 16-bytes long blocks. Each of those blocks is uniquely identified with a block code. The block code field contains the code of the block whose data is sent in this message (in the block data field).

### 3.3.2.3 Programming "Masking" Bitmap

The bitmap allows programming of only part of the parameters in a block, while leaving the other parameters with their previous values.

Each bit in the 16-bit wide value represents a byte in the parameters memory block. The LSbit of the bitmap represents the byte with the lowest offset in the program block. A value of "1" in a certain bit enables programming to the corresponding byte in the parameter's memory, whereas a value of "0" prohibits programming of that byte.

# 3.3.2.4 Block Data

Contains the actual data programmed in the specified block of the parameter memory.

| B | Bitmask bytes (Each bit is an index of a corresponding byte in a block) |   |   |   |   |   |   |        | of a   | 1      |        |        |        | Block of | EEPROM |         |         |  |  |  |  |
|---|-------------------------------------------------------------------------|---|---|---|---|---|---|--------|--------|--------|--------|--------|--------|----------|--------|---------|---------|--|--|--|--|
| 7 | 6                                                                       | 5 | 4 | 3 | 2 | 1 | 0 | 1<br>5 | 1<br>4 | 1<br>3 | 1<br>2 | 1<br>1 | 1<br>0 | 9        | 8      |         |         |  |  |  |  |
|   | Byte 0 of Bitmask Byte 1 of Bitmask                                     |   |   |   |   |   |   |        | tma    | isk    |        | Byte 0 | Byte 1 |          |        | Byte 14 | Byte 15 |  |  |  |  |

# **3.4 Generic Acknowledge Message Definition**

### 3.4.1 General Details

The generic acknowledge message is an inbound message sent by central control to verify reception of outbound status (type 0) and data forward (type 8) messages. The message is defined to have a constant length (28 bytes), all fields are defined and when not being used, they still must be sent (containing a zero value).

# 3.4.2 **Byte-Aligned Table**

| 1 | System code, byte 1 – ASCII "M" |
|---|---------------------------------|
| 2 | System code, byte 2 – ASCII "C" |

Wireless Communication Protocol 31p





| 3  | System code, byte 3 – ASCII "G"                                                                                                         |
|----|-----------------------------------------------------------------------------------------------------------------------------------------|
| 4  | System code, byte 4 – ASCII "P"                                                                                                         |
| 5  | Message type byte (a value of 4 for acknowledge message)                                                                                |
| 6  | Target Unit's ID (total 32 bits)                                                                                                        |
| 7  |                                                                                                                                         |
| 8  |                                                                                                                                         |
| 9  |                                                                                                                                         |
| 10 | Command Numerator Field                                                                                                                 |
| 11 | Authentication Code Field                                                                                                               |
| 12 |                                                                                                                                         |
| 13 |                                                                                                                                         |
| 14 |                                                                                                                                         |
| 15 | Action code                                                                                                                             |
| 16 | Main Acknowledge number – LSB (this field shall include the value received in Message Numerator field of the acknowledged transmission) |
| 17 | Reserved for Main Acknowledge number – MSB (sent as zeros)                                                                              |
| 18 | Reserved for Secondary acknowledge number – LSB (sent as zeros)                                                                         |
| 19 | Reserved for Secondary acknowledge number – MSB (sent as zeros)                                                                         |
| 20 | Reserved for future use (sent as zeros)                                                                                                 |
| 21 |                                                                                                                                         |
| 22 |                                                                                                                                         |
| 23 |                                                                                                                                         |
| 24 |                                                                                                                                         |
| 25 |                                                                                                                                         |
| 26 |                                                                                                                                         |
| 27 |                                                                                                                                         |
| 28 | Error detection code – 8-bit additive checksum (excluding system code)                                                                  |





# 3.4.3 **Detailed Per-Field Specifications**

# 3.4.3.1 Message header

Identical to Message header of Command type 0, except the Message type field sent as 4 (four)

# 3.4.3.2 Action Code

Set to zero.

# 3.4.3.3 Main Acknowledge Number

The Message Numerator filed of the acknowledged outbound message.

# 3.4.3.4 Secondary Acknowledge Number

Currently not used and sent as zero.





# **3.5 Forward Data Command Definition**

# 3.5.1 Message Ingredients

The forward data command has a varying length up to 217 bytes. It contains the following data (listed in the actual transmitted order):

Message header

- System code 4 bytes
- Message type 1 byte
- Target Unit's ID 4 bytes
- Command numerator 1 byte

Authentication code – 4 bytes

Settings Byte - 1 byte

Data length - 1 byte

Data to Forward – variable up to 199 bytes

Error detection code - 8-bit additive checksum (excluding system code)

### 3.5.2 Detailed Per-Field Specifications

### 3.5.2.1 Message header

Identical to Message header of Command type 0, except the Message type field sent as 5 (five)

### 3.5.2.2 Settings Byte

This byte is used for different system indications.

| Reserved | d, should | be sent a | s zero |       |       |       | Packet to<br>Garmin<br>(compatible to<br>Garmin's serial<br>protocol) |
|----------|-----------|-----------|--------|-------|-------|-------|-----------------------------------------------------------------------|
| Bit 7    | Bit 6     | Bit 5     | Bit 4  | Bit 3 | Bit 2 | Bit 1 | Bit 0                                                                 |

Packet to Garmin – set to"1" if the packet should be forwarded to Garmin terminal.

# 3.5.2.3 Data Length

This field should contain a number of bytes to forward (up to 199 bytes).

### 3.5.2.4 Data to Forward

This is the data that is forwarded to the terminal attached to the unit. This field must be an exact number of bytes long, as listed in the Data Length field.

Wireless Communication Protocol 31p

Page 98 of 113





# **3.6 Modular Message Request Definition**

The modular data packet request is designed to provide different data types in the same packet. The modular data request contains the following bytes (listed in the actual transmitted order).

# 3.6.1 Message Ingredients

Message header

- System Code 4 bytes
- Message Type 1 byte
- Destination Unit ID 4 bytes
- Command Numerator 1 byte
- Spare 4 bytes

Packet Control Field – 1 byte

Total Length – 1 byte

First Sub-Data Type- 1 byte

First Sub-Data Length – 1 byte

First Sub-Data- variable length, depends on Data Type

.....

Nth Sub-Data Type – 1 byte (option)

Nth Sub-Data Length - 1 byte

Nth Sub-Data- variable length, depends on Data Type N

Error Detection Code - 8 bit additive checksum

### **Byte-Aligned Table**

| 1  | System Code, byte 1 – ASCII "M"                          |
|----|----------------------------------------------------------|
| 2  | System Code, byte 2 – ASCII "C"                          |
| 3  | System Code, byte 3 – ASCII "G"                          |
| 4  | System Code, byte 4 – ASCII "P"                          |
| 5  | Message Type byte (a value of 9 for Modular Data Packet) |
| 6  | Destination Unit's ID (total 32 bits)                    |
| 7  |                                                          |
| 8  |                                                          |
| 9  |                                                          |
| 10 | Command Numerator                                        |
| 11 | Spare (sent as 0)                                        |
| 12 |                                                          |
| 13 |                                                          |
| 14 |                                                          |





| 15 | Packet Control Field                                                   |
|----|------------------------------------------------------------------------|
| 16 | Total Length                                                           |
| 17 | First Sub-data Type                                                    |
| 18 | First Sub-data Length                                                  |
|    | First Sub-data The Data                                                |
|    | Nth Sub-data Type                                                      |
|    | Nth Sub-data Length                                                    |
|    | Nth Sub-data The Data                                                  |
|    | Error Code Detection – 8-bit additive checksum (excluding system code) |

# 3.6.2 **Detailed Per-Field Specifications**

# 3.6.2.1 System Code

Refer to Section 3.2.4.1

### 3.6.2.2 Message Type

Message type identifies the type of the message. It allows the receiver to distinguish between status messages, programming and other data messages, according to the value sent in this field. Modular messages contain a value of 9 (nine) in the message type field.

# 3.6.2.3 Unit ID

Refer to Section 3.2.4.3

# 3.6.2.4 Command Numerator (Anti-Tango<sup>™</sup>)

Refer to Section 3.2.4.4

### 3.6.2.5 Packet Control Field

| Bit 7     | Bit 6        | Bits 5-0 |
|-----------|--------------|----------|
| Direction | Out of space | unused   |
|           | indication   |          |

### Direction

- 0 Data from the unit
- 1 Request (unit-bound)

### **Out of Space Indication**

- 0 All the requested data is present in the message.
- 1 Some Sub-data was not returned due to data size.

Page 100 of 113





# 3.6.2.6 Total Length

That field includes the number of data bytes with their types and lengths. It is the number of bytes from byte 17 to the byte of the checksum, which is not included.

# **3.6.2.7** Sub-Data Types Table

| 0x00 | Unused                                                                                                              |
|------|---------------------------------------------------------------------------------------------------------------------|
| 0x01 | Firmware Platform Manifest                                                                                          |
| 0x02 | CAN data                                                                                                            |
| 0x05 | Accelerometer Data                                                                                                  |
| 0x06 | PSP – DL messages to Car Alarm                                                                                      |
| 0x07 | Usage Counter Request / Command                                                                                     |
| 0x08 | Command Authentication Table Modification command                                                                   |
| 0x09 | Neighbor list of the serving GSM cell request                                                                       |
| 0x0B | Forward Data To Keyboard                                                                                            |
| 0x12 | Modular Platform Manifest                                                                                           |
| 0x14 | Modular Pulse Counter Measurement request (Sub. Data 0x14)                                                          |
| 0x18 | CFE Inputs Update message (Msg type 9, sub-data type 0x18)<br>Cello to Server / Server to Cello<br>(Infrustructure) |
| 0x19 | SingleWire Temperature Sensors (Infrastructure)                                                                     |

# 3.6.3 For Sub-Data Type 1 (Firmware Manifest)

This message serves as a Firmware manifest request, therefore a Sub-data of N Length is sent as 0, and, as a result, the Sub-data N field is not sent at all.

# 3.6.4 For Module Type 2 (CAN Data)

This message serves as a CAN data request, therefore a Sub-data N Length is sent as 0, and, as a result, the Sub-data N field is not sent at all.

# 3.6.5 **For Module Type 4 (Time and Location Stamp Module)**

This message serves as a Time and Location Stamp Module request, therefore a Subdata N Length is sent as 0, and, as a result, the Sub-data N field is not sent at all.

# 3.6.6 For Module Type 5 (Accelerometer Data)

Note this is supported by EDR unit only, refer to an appropriate documentation

Wireless Communication Protocol 31p

Page 101 of 113





# 3.6.7 Module Type 6 (PSP – UL Messages from CCC to Alarm System)

This message contains encapsulated data forwarded from the CCC to the CE8 (or CE8 compatible) Car Alarm System. Refer to Corresponding Car Alarm protocol for more details.

The Cellocator unit acknowledges, by a regular status message (Outbound message type 0, refer to Cellocator OTA protocol) with bit0 = '1' (Reply to command) in the communication control filed (Byte 10).

The message numerator of the Ack message is identical to the numerator of the command reaching from the CCC.

| Byte number |                                                  | Data     |
|-------------|--------------------------------------------------|----------|
| Ν           | Sub-data type                                    | 6        |
| N+1         | Sub-data Length                                  | Variable |
| N+2 N+X     | Payload: Data forwarded<br>from Car Alarm system | Spare    |

### 3.6.7.1 Message Structure

### 3.6.8 For Module Type 7: Usage Counter Write/Request Command

The purpose of this feature is to count the "high state" time of a pair of inputs, for example, to report the total engine hours of a machine.

The inputs whose "high state" time is counted are selectable by programming.

Two timers can be assigned to a specific input, including the option to assign both timers to the same input. Each input, including ignition, supports this "high state" time calculation.

The value of the measured time from each input is stored in RAM (protected, not erased on software reset, 24 bits for each parameter, not part of configuration memory), with a resolution of minutes.

The unit rounds off partial minutes: (1:29 is regarded as 1 minute and 1:30 and above as 2 minutes).

Once a day, the content of both usage counters is backed up on the dedicated address in non-volatile memory.

The timer proceeds with time counting (from the value stored in RAM) each time the logical level of the appropriate input changes from "low to high".

The timer stops counting each time the logical level of the input changes from "high" to "low".

The RAM values of usage counter is automatically updated on each RS232 and OTA "Counter's Set" command.





# **3.6.8.1 Command Structure**

| Byte Number  | Byte Data       |                 |
|--------------|-----------------|-----------------|
| N            | Sub-data type   | 7               |
| N+1          | Sub-data length | 9               |
| N+2          | Control byte    | Bitmap          |
| N+3          | Update period   | Time            |
| N+4          | Spare           | Spare           |
| (N+5)-(N+7)  | Usage counter 1 | Refer to bitmap |
| (N+8)-(N+10) | Usage counter 1 | Minutes         |

### **Control Byte Definition – Structure**

| Unused   | Enable periodical<br>update | Action bits |       |
|----------|-----------------------------|-------------|-------|
| Bits 3-7 | Bit 2                       | Bit 1       | Bit 0 |

### **Action Bits Definition**

|                       | Bit 1 | Bit 0 |
|-----------------------|-------|-------|
| Read counters data    | 0     | 0     |
| Write counter 1       | 0     | 1     |
| Write counter 1       | 1     | 0     |
| Write counter 1 and 2 | 1     | 1     |

### Enable Periodic Update flag Definition

If this bit is set (1) the unit starts generating packets 9 (with Sub-data field 7, refer to Inbound Channel in this document) periodically. Each packet includes a module of GPS (Sub-data 4). The period of the packet generation is defined in byte N+3 of this command.

A value of zero cancels periodic message generation.

# 3.6.8.2 Update Period Definition

The value defines the rate of the periodic update of usage counters. The value of the counter is stored in the corresponding address on the EEPROM and implemented immediately.

The byte is only used when the "Enable Periodic Update" flag in the Control byte of this command is set.

**Data format**: 1 byte, 1 minute resolution, from 1 minute to 255 minutes. Zero value cancels timers reporting.

Wireless Communication Protocol 31p

Page 103 of 113

Copyright © 2013 by Pointer Telocation, Ltd.





### **Counters Data Field Definition**

| Counter 2 va                            | lue                                 |                       | Counter 1 value |                |            |  |
|-----------------------------------------|-------------------------------------|-----------------------|-----------------|----------------|------------|--|
| Byte N+10                               | Byte N+9                            | Byte N+8              | Byte N+7        | Byte N+6       | Byte N+5   |  |
| <b>NOTE:</b> If both<br>"don't care" ar | Action bits are<br>nd is sent as ze | zero (request<br>ros. | command) the    | °Counters data | ″ field is |  |

# 3.6.9 For Module Type 8: Command Authentication Table Change

The system provides protection against unapproved command attempts. For example, it provides protection against an attempt to change traffic destination IP by an unauthorized person. Every incoming message to the unit (such as command, acknowledge and so on) is provided a unique code, which is verified by the unit. If the code is not verified as authentic, the unit does not perform / acknowledge the command.

If Command Authentication is enabled in the unit's programming, the unit checks a valid 4-byte authentication code in bytes 11-14 of every inbound message. An inbound message with an invalid authentication code is declined by the unit. The unit does not respond to such a command and does not perform it. The 4 bytes authentication code in bytes 11-14 is generated as a function of two variables:

- Unit's ID.
- 8 bytes Authentication Table, stored in the EEPROM of the unit and concurrently in the Communication Center application.

**NOTE:** The OTA Authentication table modification will be accepted by the unit only if the Command Authentication feature is DISABLED in the unit's programming.

Default values of the Authentication Table are as follows:

### Authentication Table (8 bytes, 16 nibbles):

| Index | 0 | 1  | 2 | 3 | 4  | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
|-------|---|----|---|---|----|---|---|---|---|---|----|----|----|----|----|----|
| Value | 2 | 15 | 7 | 9 | 12 | 1 | 4 | 6 | 8 | 3 | 11 | 14 | 0  | 5  | 10 | 13 |

# 3.6.9.1 Authentication Table write/read command (Sub-Data type 8)

This packet is sent to the unit in order to access an Authentication Table values OTA (read, write or modify):

| Description   | Value |
|---------------|-------|
| Sub-data type | 0x08  |

Page 104 of 113





| Sub-data length                    | 0×0A                                   |                               |  |  |  |  |
|------------------------------------|----------------------------------------|-------------------------------|--|--|--|--|
| Action byte                        | Bitmap, see the following description. |                               |  |  |  |  |
| Spare                              | 0x00                                   |                               |  |  |  |  |
| 8 bytes of<br>Authentication table | Authentication table Index 0           | Authentication table Index 1  |  |  |  |  |
|                                    |                                        |                               |  |  |  |  |
|                                    | Authentication table Index 14          | Authentication table Index 15 |  |  |  |  |

# 3.6.9.2 Action Byte

| Value | Description                                                                                                 | Remarks                                              |
|-------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| 0     | Read Authentication table from EEPROM                                                                       | Bytes 11-18 of the command are don't care            |
| 1     | Write Authentication table to<br>EEPROM (supported only<br>when the Authentication<br>command is disabled). | Bytes 11-18 contain the new values to be programmed. |
| 2-7   | Reserved                                                                                                    |                                                      |

**NOTE:** Reset is required in order to apply OTA Authentication table modification.

\_\_\_\_\_

# 3.6.10 For Module Type 9: Neighbor list of the serving GSM cell request

This packet will cause the unit to generate a packet, containing last knows GSM related information (updated every 60 seconds) from the whole set of seven cells in the neighbor list of the serving cell.

| Field                                    | Description |
|------------------------------------------|-------------|
| Length                                   | 2           |
| Neighbor list of the serving<br>GSM cell | 9           |
|                                          | 0 - Spare   |

The unit responds with neighbor list of the serving GSM cell (Sub-Data Type 9)

# 3.6.11 Forward Data To Keyboard (Sub Data Type 0xB)

The unit responds with neighbor list of the serving GSM cell (Sub-Data Type 9)

Page 105 of 113





| Byte Number | Byte Data                                                                                 |                                                                                                    |
|-------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Ν           | Sub-data type                                                                             | В                                                                                                  |
| N+1         | Sub-data length                                                                           | Variable (Refer to table<br>below).<br>If this field is 0, the unit will<br>respond by Keyboard ID |
| N+2         | Length of data to be<br>forwarded to 1-Wire port                                          | Actually (Sub-data length-<br>2)                                                                   |
| N+3         | Length of expected reply<br>from the Keyboard to be<br>forwarded back from 1-Wire<br>port | Refer to 1-Wire Interface<br>Protocol                                                              |
| N+4         | Command Type                                                                              | Refer to table below                                                                               |
| N+5 – N+x   | Command Data (optional,<br>variable length, in some<br>cases missing)                     | Refer to 1-Wire Interface<br>Protocol                                                              |

# **3.6.11.1 Command Type** (Refer to Cello AR 1-Wire Interface Protocol)

| Command name                           | Command Type | Data    |  |  |
|----------------------------------------|--------------|---------|--|--|
| Reset keyboard                         | [80H]        | 1 byte  |  |  |
| Keyboard id request (read rom)         | [33H]        | No Data |  |  |
| Feedback to driver                     | [81H]        | 3 bytes |  |  |
| Set operational state                  | [82H]        | 2 bytes |  |  |
| Time Update                            | [83H]        | 4 bytes |  |  |
| Access Code Programming                | [85H]        | 3 bytes |  |  |
| System Code (Multicode)<br>Programming | [87H]        | 3 bytes |  |  |
| Status request                         | [89H]        | 1 byte  |  |  |
| Code request                           | [8AH]        | 2 bytes |  |  |
| Driver Code Control<br>Command         | [8CH]        | 4 bytes |  |  |

# 3.6.12 For Modular Platform Manifest request (Sub. Data 0x12)

This command causes the unit to generate an OTA Modular Platform Manifest message. The message will contain the data fields as per the specification in a command

Wireless Communication Protocol 31p





Data part: The data part of this packet has a size of 6 bytes. Each byte contains a bitmask as described below. Setting bit to "1" causes the unit to add a corresponding field to the Modular Platform Manifest.

| Byte            | Description |
|-----------------|-------------|
| Sub Data Type   | 0x12        |
| Sub Data Length | 0x06        |
| Byte 0          | Bitmap      |
| Byte 1          | Bitmap      |
| Byte 2          | Bitmap      |
| Byte 3          | 0           |
| Byte 4          | 0           |
| Byte 5          | 0           |

### Byte 0

| Size of<br>external<br>RAM | Amount<br>of ext.<br>non-<br>volatile<br>memory<br>used by<br>applicati<br>on (f.ex.<br>configur<br>ation) | Size of<br>external<br>non-<br>volatile<br>memory | Size of<br>internal<br>RAM | Amount<br>of non-<br>volatile<br>memory<br>used by<br>applicati<br>on (f.ex.<br>configur<br>ation) | Size of<br>internal<br>non-<br>volatile<br>memory | Accelero<br>meter<br>identifier | Processo<br>r<br>identifier |
|----------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------|----------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------|---------------------------------|-----------------------------|
| Bit 7                      | Bit 6                                                                                                      | Bit 5                                             | Bit 4                      | Bit 3                                                                                              | Bit 2                                             | Bit 1                           | Bit 0                       |

### Byte1

| FW<br>Upgrade<br>Date/Ti<br>me | Initial<br>Power<br>up<br>Date/Ti<br>me | GPS<br>firmware | GPS<br>Type | Modem<br>firmware | Modem<br>type | Current<br>Hardwar<br>e ID<br>number | Current<br>Firmwar<br>e ID<br>number |
|--------------------------------|-----------------------------------------|-----------------|-------------|-------------------|---------------|--------------------------------------|--------------------------------------|
| Bit 7                          | Bit 6                                   | Bit 5           | Bit 4       | Bit 3             | Bit 2         | Bit 1                                | Bit 0                                |





### Byte 2

| Spare (unassigned) |       |       | Boot<br>loader<br>ID | System<br>ID (STM<br>ID in<br>case of<br>STM<br>controlle<br>r) | Firmwa<br>re<br>name<br>(string) | Last<br>Configurat<br>ion<br>Change<br>Date/Time |       |
|--------------------|-------|-------|----------------------|-----------------------------------------------------------------|----------------------------------|--------------------------------------------------|-------|
| Bit 7              | Bit 6 | Bit 5 | Bit 4                | Bit 3                                                           | Bit 2                            | Bit 1                                            | Bit 0 |

Bytes 3-5 are currently unassigned and should be sent as zeros.




## 3.6.13 Modular Pulse Counter Measurement request (Sub. Data 0x14)

Fuel consumption measurement Request (as from the last time the counter was reset)

| Byte            | Description |
|-----------------|-------------|
| Sub Data Type   | 0x14        |
| Sub Data Length | 2           |
| Spare           | 0           |
| Spare           | 0           |

Pulse Counter Measurement Response

#### 3.6.14 CFE Inputs Update message (Msg type 9, sub-data type 0x18) Cello to Server (Infrustructure)

| Byte no. | Description                 | Containing            |
|----------|-----------------------------|-----------------------|
| 1        | System code, byte 1         | ASCII "M″             |
| 2        | System code, byte 2         | ASCII "C"             |
| 3        | System code, byte 3         | ASCII "G″             |
| 4        | System code, byte 4         | ASCII "P"             |
| 5        | Message type                | 9                     |
| 6        | Unit's ID (total 32 bits)   | Same as in Msg type 0 |
| 7        |                             |                       |
| 8        |                             |                       |
| 9        |                             |                       |
| 10       | Communication Control field |                       |
| 11       |                             |                       |
| 12       | Message Numerator           |                       |
| 13       | Packet Control Field        | 0x00                  |

Copyright  $\ensuremath{\mathbb{C}}$  2013 by Pointer Telocation, Ltd.





| Byte no. | Description                                                                                                                                                                                 | Containing |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| 14       | Total Data length                                                                                                                                                                           | 0d55       |
| 15       | Sub-Data Type                                                                                                                                                                               | 0x18       |
| 16       | Sub-Data Length                                                                                                                                                                             | 0d26       |
| 17       | Spare                                                                                                                                                                                       |            |
| 18       |                                                                                                                                                                                             |            |
| 19       | Pin 14 / Door Type / Assigned function<br>(same as in a configuration)<br>Since Legacy Cello doesn't support 8/12 bit<br>ADC resolution this message will always<br>send 8 bit resolution.  |            |
| 20       | Measurement LSB Door (In case of discrete 0 for 0, 255 for 1)                                                                                                                               |            |
| 21       | Measurement MSB Door                                                                                                                                                                        |            |
| 22       | Pin 15 / Shock Type / Assigned function<br>(same as in a configuration)<br>Since Legacy Cello doesn't support 8/12 bit<br>ADC resolution this message will always<br>send 8 bit resolution. |            |
| 23       | Measurement LSB Shock (In case of discrete 0 for 0, 255 for 1)                                                                                                                              |            |
| 24       | Measurement MSB Shock                                                                                                                                                                       |            |
| 25       | Input1 Type / Assigned function<br>(same as in a configuration)                                                                                                                             |            |
| 26       | Measurement LSB In1 (In case of discrete 0 for 0, 255 for 1)                                                                                                                                |            |
| 27       | Measurement MSB In1                                                                                                                                                                         |            |
| 28       | Input2 Type / Assigned function In2<br>(same as in a configuration)                                                                                                                         |            |
| 29       | Measurement LSB In2 (In case of discrete 0 for 0, 255 for 1)                                                                                                                                |            |





| Byte no. | Description                                                         | Containing                                                             |
|----------|---------------------------------------------------------------------|------------------------------------------------------------------------|
| 30       | Measurement MSB In2                                                 |                                                                        |
| 31       | Input3 Type / Assigned function In3<br>(same as in a configuration) |                                                                        |
| 32       | Measurement LSB In3 (In case of discrete 0 for 0, 255 for 1)        |                                                                        |
| 33       | Measurement MSB In3                                                 |                                                                        |
| 34       | Input4 Type / Assigned function In4<br>(same as in a configuration) |                                                                        |
| 35       | Measurement LSB In4 (In case of discrete 0 for 0, 255 for 1)        |                                                                        |
| 36       | Measurement MSB In4                                                 |                                                                        |
| 37       | Input5 Type / Assigned function In5 (same as in a configuration)    |                                                                        |
| 38       | Measurement LSB In5 (In case of discrete 0 for 0, 255 for 1)        |                                                                        |
| 39       | Measurement MSB In5                                                 |                                                                        |
| 40       | Input6 Type / Assigned function In6 (same as in a configuration)    |                                                                        |
| 41       | Measurement LSB In6 (In case of discrete 0 for 0, 255 for 1)        |                                                                        |
| 42       | Measurement MSB In6                                                 |                                                                        |
| 43       | Sub-data Type                                                       | 4                                                                      |
| 44       | Sub-data Length                                                     | 0d25                                                                   |
| 45       | Location status (flags)                                             | See the following description of sub-data type 4 in Wireless protocol. |
| 46       | Mode 1 (from GPS)                                                   |                                                                        |
| 47       | Mode 2 (from GPS)                                                   |                                                                        |
| 48       | Number of satellites used (from GPS)                                |                                                                        |





| Byte no. | Description                                                       | Containing |
|----------|-------------------------------------------------------------------|------------|
| 49-52    | Longitude                                                         |            |
| 53-56    | Latitude                                                          |            |
| 57-59    | Altitude                                                          |            |
| 60-61    | Ground speed                                                      |            |
| 62-63    | Speed direction (true course)                                     |            |
| 64       | UTC time – seconds                                                |            |
| 65       | UTC time – minutes                                                |            |
| 66       | UTC time – hours                                                  |            |
| 67       | UTC date – day                                                    |            |
| 68       | UTC date - month                                                  |            |
| 69       | UTC date - year minus 2000 – 1 byte (e.g. value of 7 = year 2007) |            |
| 70       | Check Sum                                                         |            |

#### 3.6.15 Request Analog measurements (Msg type 9, sub-data type 0x18) Server to Cello

| Byte no. | Description               | Containing            |
|----------|---------------------------|-----------------------|
| 1        | System code, byte 1       | ASCII "M″             |
| 2        | System code, byte 2       | ASCII "C"             |
| 3        | System code, byte 3       | ASCII "G″             |
| 4        | System code, byte 4       | ASCII "P″             |
| 5        | Message type              | 9                     |
| 6        | Unit's ID (total 32 bits) | Same as in Msg type 0 |
| 7        |                           |                       |





| Byte no. | Description                 | Containing |
|----------|-----------------------------|------------|
| 8        |                             |            |
| 9        |                             |            |
| 10       | Communication Control field |            |
| 11       |                             |            |
| 12       | Message Numerator           |            |
| 13       | Packet Control Field        | 0x00       |
| 14       | Total Data length           | 0d55       |
| 15       | Sub-Data Type               | 0x18       |
| 16       | Sub-Data Length             | 0d2        |
| 17       | Spare                       |            |
| 18       |                             |            |
| 19       | Check Sum                   |            |