This guide is based on the production version of the Globalstar SmartOne C. Software changes may have occurred after this printing.

Globalstar reserves the right to make changes in technical and product specifications without prior notice.

Globalstar Inc.
300 Holiday Square Blvd.
Covington, LA 70433

Copyright® 2017 Globalstar® Incorporated.
All rights reserved.

Globalstar® is a registered trademark of Globalstar Incorporated.

All other trademarks and registered trademarks are properties of their respective owners.

Printed in the United States of America
Table of Contents

1. **SmartOne Basics** ... 1
 - Overview .. 1
 - Modes of Operation ... 1
 - Standard Messaging ... 1
 - Reduced Messaging ... 2
 - Theft Alert ... 2
 - Inputs .. 3
 - Serial Commands .. 3
 - Satellite Communications .. 4
 - Globalstar Satellite Network .. 5

2. **Getting Started** ... 6
 - The SmartOne Device .. 6
 - Installing Batteries ... 6
 - Turning On and Off ... 6
 - Mounting ... 6
 - Programming Overview ... 7
 - Inputs .. 7
 - Installation of Configuration Software ... 7
 - Installation of Windows USB Driver ... 7
 - Connecting Devices ... 7

3. **SmartOne Configuration Software Overview** ... 8
 - User Data Entry Pane ... 8
 - Status Pane .. 9
 - Electronic Serial Number(ESN) Status Display Table 9
 - List ESN(s) Button ... 9
 - View Summary Button .. 9
 - PROGRAM Button ... 9
 - Toolbar .. 10
 - File Menu .. 10
 - Tools Menu .. 12
 - Help Menu ... 14

4. **User Data Entry Pane** .. 15
 - Getting Started Tab ... 15
 - Standard Messaging .. 15
 - Standard Messaging Mode - Without Motion .. 15
 - Standard Messaging Mode - With Motion .. 15
5. Messages ...36
 Global Message Type ...36
 Type 0 Message Class ...36
 Message Format ..36
 Location Message ..38
 Device Turned On Message38
 Change of Location Area Alert Message38
 Input Status Changed Message38
 Undesired Input State Message38
 Re-Center Message ..38
 Type 1 Message Class ...39
 Truncated Message Type – Single Packet39
 Truncated Message Type – Multiple Packet Version40
 Type 2 Message Class ...41
 Raw Message Type – Single Packet Version41
 Raw Message Type – Multiple Packet Version41
 Type 3 Message Class ...42
 Diagnostic Message ...42
 Replace Battery Message43
Appendix L

Appendix K

Appendix J

Appendix I

Appendix H

Appendix G

Appendix F

Appendix E

Appendix D

Appendix C

Appendix B

7. Connecting Serial Devices to the SmartOne .. 50

Appendix A - Glossary of Terms ... 51

Appendix B - Technical Support .. 54

Appendix C - RF Radiation Exposure Statement ... 55

Appendix D - Regulatory Notices ... 56

 FCC/IC Notices ... 56
 CAN ICES-3(A)/NMB-3(A) ... 56
 Avis de la FCC/IC .. 56
 CAN ICES-3(A)/NMB-3(A)1 ... 56
 CE Notices .. 57

Appendix E – General Warnings ... 58

Appendix F – Specifications & Standards .. 59

Appendix G – Latitude/Longitude Decoding .. 60

Appendix H – Standard Message Decoding .. 61

Appendix I - Diagnostic Message Decoding ... 62

Appendix J - Accumulate/Count Message Decoding ... 63

Appendix K - External Input Cables ... 64

Appendix L – Battery Life Estimate .. 65
1. SmartOne Basics

Overview

The SmartOne is designed to track the positions of trailers, cargo containers, heavy construction equipment, generators, boats/barges and any other mobile assets. The SmartOne also has 2 dry contact inputs, to manage run time of engines and/or other alarm inputs, and one serial port for passive and smart sensors.

The SmartOne processes GPS satellite signals to obtain its position in terms of longitude and latitude and transmits this information over Globalstar’s Satellite Network. In addition to position information, the SmartOne transmits other message types that include battery status, input alarm status and diagnostic information. The SmartOne is configured using a computer and USB configuration cable to communicate these messages at certain times and/or under certain conditions.

NOTE: Unless specifically called out otherwise, SmartOne in this manual refers to a SmartOne C unit. Also, Globalstar is only responsible for ensuring that the SmartOne C meets the published manufacturing specifications described herein.

Modes of Operation

The SmartOne can be configured to operate in three different Modes:

- Standard Messaging Mode
- Reduced Messaging Mode
- Theft Alert Mode.

Standard Messaging

In Standard Messaging Mode, the SmartOne reports its position at regular time intervals that are programmed during the configuration process. Standard Messaging Mode can also be configured to utilize the SmartOne’s internal motion sensor. If enabled, the SmartOne will transmit its position at independently configured regular time intervals when the device is In Motion.

Location messages can be programmed to be constant (Message Interval) or the device may be configured to use up to 12 different delays in sequence (Message-Time(s) of Day). Message Interval can be programmed in 1 minute intervals from 35 minutes up to 45 days.

- **Example of Message Interval**: The SmartOne is configured to report once every 24 hours when not In Motion and every 2 hours when In Motion. If the SmartOne went into motion at any time of day the Message Interval while In Motion would be every 2 hours beginning when the SmartOne started moving.

- **Example of Message-Time(s) of Day**: The SmartOne is configured with a message time of day of 9:00am, a second message time of day of 12:00 noon, a third message time of day of 8:00pm and once per hour when In Motion. The SmartOne would transmit 3 messages a day at the same configured times every day. If the SmartOne went In Motion it would transmit its location message every hour.
• **Usage Example:** A Company is required to report the GPS locations of their hazardous chemical containers twice a day. Based on this requirement the Company has 2 options: set a message interval of every 12 hours, the 12 hour internal begins when the device is powered up or when the configure message times of day are 12:00 noon and 12:00 midnight.

Reduced Messaging

Reduced Messaging Mode extends the battery life associated with transmitting messages over Globalstar’s satellite network by sending messages at a minimal message interval when the asset is in a defined area and transmits at a higher message interval when the asset is changing locations. These message intervals are set as part of the configuration process based on the concept that repeated reporting information of the same location, when an asset has not moved from its defined area, is redundant and doesn’t provide addition usable information about its current location.

By comparing current and prior position information, the SmartOne determines if its location is changing. The definable area in which the device should remain in Reduced Messaging Mode is called the Change of Location Area and it is a square. When the SmartOne goes outside of the square, its location is considered to be changing or relocating.

Usage Example: A fleet operator owns 1,000 trailers. When the trailer(s) are sitting at a depot they want a location message once a day. They also want a message notification within 1 hour when a trailer has left a depot. Lastly, they want a location message every 3 hours when a trailer is moving between depots. Based on this requirement, the fleet operator will need to set the Change of Location Area (size of the depots where the trailers will visit), the message interval while the trailers are inside the Change of Location Area (1 per day), the interval at which the SmartOne will check its location while in a State of Vibration and inside the Change of Location Area(1 per hour), set the number of messages when the trailer leaves the Change of Location Area (1 Change of Location Area Alert Message) and the message interval while the trailers are in transit between depots (every 3 hours).

Theft Alert

When the SmartOne is configured to operate in the Theft Alert Mode, it differentiates between authorized and unauthorized movement of an asset. While the power to the SmartOne is turned off, all movement of the asset is considered authorized. When power is turned on, the SmartOne obtains a position from GPS satellites. The position is used to set the center of the defined Change of Location Area in Theft Alert Mode. While in the Change of Location Area, the SmartOne obtains position fixes at an interval set during configuration. As long as the SmartOne remains within the Change of Location Area all movement is considered to be authorized.

Once the SmartOne’s position is outside of the Change of Location Area, it alerts the SmartOne to an unauthorized movement and immediately sends a location message (Change of Location Alert Message). The SmartOne continues to send location messages at a message interval set during the configuration process until the power is turned off or the battery is dead.

Usage Example: A construction company is working on a job site for 1 year and wants to ensure that their generators and other heavy equipment on site aren’t stolen. The company wants to check the location of their equipment 12 times a day, every 2 hours, to confirm the asset hasn’t been stolen, but only wants a transmitted location message once per day. Based on this requirement, the construction company will need to set the Change of Location Area (size of the job site), the message interval while inside the Change of Location Area (1 per day), the interval at which the SmartOne will check its location while in a State of Vibration and within the Change of Location Area (every 2 hours) and the message interval if the asset is outside the Change of Location Area (stolen).
Inputs

The SmartOne has an I/O port that provides ground, two dry contact inputs, power and soft-power down, and serial communication lines.

The SmartOne allows sending Input Status Changed Messages for both Input 1 and Input 2. The Inputs must be asserted for at least 5 seconds in order to be acknowledged.

Usage Example: A construction company needs to document, per their contract, when they begin their work day and when they end their work day. Based on this requirement, the SmartOne would be connected to the ignition switch and configured to send a transmission with location when the input changes state.

The SmartOne also allows the user to define the Message Interval while the Inputs are in an Undesired State, either Opened or Closed.

Usage Example: A company has remote containers at job sites and would like to know if a door is ajar. If a door is left ajar the company would like a notification every 2 hours. Based on this requirement, the SmartOne would be connected to an open door sensor with the Undesired Input State Message enabled and set as Opened with a Message Interval of 2 hours.

Note: The SmartOne uses a 5 minute "hysteresis" window to prevent sending false alarms. This means that only one status change message can be sent during any 5 minute time window. Any subsequent status changes will be detected but not reported. Multiple status changes during any 5 minute window will result in the transmission of incorrect trigger bits. Refer to page 33 for Input Status Changed Message.

The SmartOne has the ability to send an Accumulate/Count Message at a regular configurable interval and/or based on configurable multiples of accumulated hours and/or number of counted events or hours of vibration.

Usage Example 1: A construction company needs weekly engine run times for their heavy equipment to manage their maintenance scheduling. Based on this requirement, the company would schedule a weekly Accumulate/Count Message.

Usage Example 2: A construction company wants to insure that no equipment is ever operated beyond 400 hours without maintenance. Based on this requirement, the company would schedule an Accumulate/Count Message for every 400 hours of use.

The SmartOne has the ability to send both Status Change and Undesired State messages based on vibration.

Serial Commands

The SmartOne uses the I/O port for unit configuration as well as interface to remote passive and smart sensors. Two commands are provided in the unit interface to support smart sensors. External sensors or instruments, that can format and communicate with the SmartOne, can send user data through the SmartOne by using these two commands.

The SmartOne connects to smart sensors via the SmartOne External Input Cable (see Appendix K – External Input Cable)
Satellite Communications

The SmartOne communicates with both the GPS satellite network and the Globalstar Satellite Network. All GPS locations are pulled from the GPS network and all transmissions are sent via the Globalstar Satellite Network.

The SmartOne has the unique ability to check its GPS coordinates at a programmable rate while it is inside of the Change of Location Area without actually sending a message over the Globalstar Satellite Network.

For a Location Message, the SmartOne will wake up at a scheduled interval or time of day and begin to acquire a GPS fix. Once it receives its GPS fix, the SmartOne will transmit its location to the Globalstar Satellite Network.
Globalstar Satellite Network

The network consists of 32 Low Earth Orbiting (LEO) satellites that are constantly orbiting the earth and complete their orbits in less than 2 hours. Because of this, the SmartOne will be in contact with at least one of the satellites during each scheduled transmission. In LEO communication networks, the satellites are constantly changing their positions in the sky relative to the transmitter on earth. This minimized the shading effects seen in geostationary satellite systems where the mobile device must be pointed toward a specific direction in the sky. Geostationary satellites also orbit at a much higher altitude and move along the equator.

Messages are transmitted from the SmartOne via the Globalstar Satellite Network using an uplink-only connection (one-way data transmission) and received by a Globalstar Ground Station. The messages are then sent via an HTTP or FTP server to the internet and received by the VAR or end customer's back office application and converted into actionable data.

The SmartOne will send each message 3 times to insure that the message has been received by the Globalstar Satellite Constellation. Once Globalstar receives the message, any remaining duplicate messages are ignored and discarded (VAR or end user account is only charged for 1 transmission).
2. Getting Started

The SmartOne Device

Installing Batteries

The SmartOne is powered by, and comes with, four installed 1.5V Lithium AAA batteries. The battery compartment is accessible from the bottom of the device by removing the four Philips head screws. Remove the water-tight cover and insert the batteries to align with the positive and negative markers.

Note: When the batteries are removed and replaced the device will retain its configuration.

Caution: Replaceable Batteries: Risk of explosion of battery if replaced by an incorrect type. Dispose of used batteries according to the manufacturer’s instructions.

Caution: Upon replacing the Battery Compartment Cover, tighten the screws according to specification; otherwise the unit may no longer retain its water-tight capability.

Turning On and Off

To turn the device ON or OFF, remove the connector cover from the end of the device. Then slide the switch actuator towards the desired direction of the ON or OFF markings.

Mounting

The SmartOne is designed to be mounted to an asset using double-sided adhesive tape and/or the included mounting bracket. The mounting bracket has four screws that attach to the asset and allows the SmartOne to be mounted so the antenna can face the sky whether mounted internally or externally. This enables the antenna to have a direct view of the sky with mounting flexibility. The SmartOne attaches to the mounting bracket using four Phillips-head screws.

NOTE: The antenna is located under the product’s cover where the statement “THIS SIDE TOWARDS SKY DO NOT PAINT” is to be found.
Programming Overview

The SmartOne comes ready to use with a factory configuration loaded in the device. The factory configuration, Standard Messaging without Motion and Interval Messaging of 12 hours, may be changed using the SmartOne Configuration Software, the USB Configuration Cable and a (Windows)PC.

Inputs

The SmartOne has two inputs that can be accessed by using the SmartOne External Input Cable, which is sold as an accessory to the device.

Installation of Configuration Software

The SmartOne Configuration Software can be downloaded from the Globalstar website at http://var.globalstar.com. Login to your VAR account using your username and password. The Configuration Software is located in the software downloads section and is supported by Windows 7, Windows Vista, Windows XP Service Pack 2, Windows 2000 and Windows 98.

Installation of Windows USB Driver

In order to properly connect to the SmartOne unit using the USB Configuration Cable, the required USB device driver must be installed on the PC running the Windows Operating System. In particular, the device driver for using the USB Configuration Cable is supplied by Prolific (PLZ303_Prolific_DriverInstaller_v1.18.0B.zip) and may be downloaded at the following link: http://www.prolific.com.tw/US/ShowProduct.aspx?p_id=225&pcid=41.

Download the ZIP file, unpack it, then run the DriverInstaller executable. It should seamlessly install the correct USB device driver for use with the SmartOne USB Configuration Cable.

Connecting Devices

The SmartOne, with batteries installed and battery cover screwed down, connects to a PC using a USB Configuration Cable. Since the Windows Operating System needs to install the driver for the SmartOne USB Configuration Cable, first connect the cable to the PC, then to the SmartOne unit. The USB Configuration Cable plugs into the SmartOne when the connector cover is removed. The SmartOne Configuration Software may be used without being connected to devices to prepare configurations, but must be connected to a device using the USB Configuration Cable to program it. Once the Program button has been depressed the USB Configuration Cable should not be disconnected, if already connected, from the device and/or the computer.

Caution: Upon replacing the Configuration Cable Cover, tighten the screws according to specification; otherwise the unit may no longer retain its water-tight capability.
3. SmartOne Configuration Software Overview

Once installed on a PC, the SmartOne Configuration Software is used to configure a SmartOne unit. The configuration has a tab-based, context-switched user data entry pane on the top screen of the window and a static status pane on the bottom.

User Data Entry Pane

The user data entry pane contains a context-switched user entry area for displaying and inputting configuration data. The information is organized in pages with page manipulation provided through tabs along the top of the pane. Selecting a tab will change the context of the upper pane. The tabs are named to group similar functions on the same page. The tabs will change according to the operation Mode selected. The Back and Next buttons allow the user to move from tab to tab without clicking on the tab name.
Status Pane

The Status Pane contains a table with a list of devices connected to the PC, their ESN(s), firmware version and COMM port assigned to each device as well as the execution buttons for configuring connected SmartOne(s).

<table>
<thead>
<tr>
<th>ESN</th>
<th>FW Ver</th>
<th>COM</th>
</tr>
</thead>
<tbody>
<tr>
<td>2600040</td>
<td>10/11</td>
<td>COM4</td>
</tr>
</tbody>
</table>

Electronic Serial Number (ESN) Status Display Table

- **ESN Column** - This column displays a list of the Electronic Serial Numbers for SmartOne(s) connected to the PC.
- **FW Ver Column** - This column displays a list of firmware version for the main processor for each SmartOne in the list.
- **COM Column** - This column displays a list of the assigned communication ports for each SmartOne.

List ESN(s) Button

This button shall cause the Configuration Software to search for any valid devices that are connected to the PC. (A pop up window informs the user that the program is searching for devices connected to the computer while this search is being performed.)

View Summary Button

This button causes the Configuration Software to open a separate window, which contains plain text readout of every user configurable parameter that exists for the SmartOne.

- The Menu Bar in the View Summary Window allows the user to either print the parameters or save the configuration parameters to a text file.
- This window remains open while the user manipulates the fields in the User Data Entry Pane tabs and will update as changes are made.

PROGRAM Button

The Program button in the Status Pane is used to send the data in the configuration software to the connected SmartOne unit(s). The SmartOne will be updated with the data from the Configuration Software. The user is queried to confirm device program before execution of the function.
Toolbar

File Menu

- **New Configuration** - This will reset the values for all configurable parameters to default. Standard Messaging without Motion with a transmission every 12 hours is the default Mode of operation.

 This selection will open a prompt window asking for confirmation to restore all settings to their default. This will not affect the settings stored inside the connected SmartOne(s). The settings will only reset in the software display; it will not reset any device(s) connected to the PC. The PROGRAM button must be clicked on to download a configuration to the device.

- **Open Configuration from File**. This opens a window that allows the user to browse for a valid configuration file that has previously been saved. Selecting a file will cause all of the settings contained in the file to be loaded into the software display only, not in any devices connected to the PC. Click the PROGRAM button to download configuration to the device.

- **Read Configuration from SmartOne**. This will query all of the configurable parameters saved in a device connected to the PC. The values for each configurable parameter in the device will be displayed in the User Data Entry Pane.

- **Save Configuration**. This will open a window that allows the user to browse to a location and save all of the configuration settings.
- Open Configuration from History. Every time a device is successfully programmed, the configuration will save that occurrence to a text log file. The information stored is the ESN of the device, the local time at which it was programmed and the actual configuration of the device.

When selected, a window opens where the user can sort by ESN or date/time of programming and select a configuration. This loads the selected configuration settings into the User Data Entry Pane, but not into any device(s) connected to the PC.

- Exit. This causes the program to close.
- **SmartOne Testing** - This command opens up a window with the following options:

 - SMARTONE(s) – Drop down list of connected SmartOne units listed by ESN.

 - **Send Location Message Button** - Causes the SmartOne connected to the COM port to obtain a GPS fix and send a Location Message.

 - **Send Diagnostic Message Button** – Causes the SmartOne connected to send diagnostic information including battery status, GPS average search time, GPS fails and number of transmissions since last diagnostic message.

 - **Send Truncated Message Button** - Causes the SmartOne to seek a GPS location, and then send a Truncated SmartOne message (type 1). The hex-character data in the text box below the command will be appended to the GPS data and sent.

 - **Send Raw Message Button** - Causes the SmartOne to send the first 8 bytes of data in the text box below the command as the payload for the Raw Payload Message (type 2). The hex-character data in the text box below the command will be sent instead of the normal SmartOne position data.

 - **Close Button** – Causes the pop up window to close.
- **Read Diagnostic Information from Device.** This command line causes the Configuration Software to query the diagnostic information from the SmartOne and display the information in a pop up window in a text format.

There are two menu options available in the pop up window:
- **Print Diagnostic** – Prints the diagnostic information.
- **Save Text to File** – Opens a window, which allows the user to browse for a location and save the diagnostic information in a text file.

- **Test Vibration Sensor Sensitivity** - Is used to find the minimum, maximum and average vibration sensitivity detected by the sensor. This information helps to determine the appropriate Level of Sensitivity for the motion sensor. This window will update real time while connected to the SmartOne.
Help Menu

- **Product Specification.** This opens a PDF displaying the selected SmartOne’s technical specification document.

- **SmartOne Website.** This opens the selected SmartOne landing page located on the Globalstar website, displaying the specified SmartOne’s features, accessories and purchasing information.

- **Mixed Products Welcome.** This opens a dialog box stating that the SmartOne Configuration Software has been updated to be able to program both SmartOne Bs and SmartOne Cs. Additionally instructions on how to use a SmartOne B Configuration File are displayed.

- **About.** This pops up a window with the SmartOne Configuration version number.
4. User Data Entry Pane

Getting Started Tab

The Getting Started Tab allows the user to select the Mode of operation for the SmartOne. The Modes includes:

- Standard Messaging with or without motion
- Reduced Messaging
- Theft Alert Mode.

![Modes of Operation](image)

Standard Messaging

Standard Messaging Mode - Without Motion

The Standard Messaging without Motion Mode is selected for basic location functionality on the SmartOne. The SmartOne will automatically report its position at regular time intervals. The messages sent in this Mode are called Location Messages. These messages include the GPS coordinates of the actual location of the SmartOne.

In this Mode, the motion sensor is OFF.

Standard Messaging Mode - With Motion

The Standard Messaging with Motion Mode is selected for basic tracking functionality with motion detection capabilities. The user defines the motion parameters for each application including the Level of Sensitivity of the motion sensor, Time to be in a State of Vibration and Time to be in a State of Lacking Vibration. The SmartOne can be set to report at a different rate, Message Interval while In Motion, compared to the Location Message Interval.
Reduced Messaging Mode

The Reduced Messaging Mode is ideal for asset management with reduced messaging capability of the SmartOne. The SmartOne creates a Change of Location Area of configurable size around the device. If the SmartOne stays within its Change of Location Area, the number of transmissions will be reduced.

When the SmartOne leaves the Change of Location Area and returned to a State of Lacking Vibration a new Change of Location Area is created around the SmartOne.

Theft Alert Mode

The Theft Alert Mode is ideal for assets that are high-risk for theft. In this Mode, the SmartOne creates a Change of Location Area around its location when powered. The size of the Change of Location Area is a configurable parameter equal to the distance the device must move to be considered outside the Change of Location Area. If outside the Change of Location Area, the SmartOne goes into alert mode, transmitting frequent messages until the asset is recovered. The message interval in alert mode is a configurable parameter; however, the default value is 10 minutes.

Standard Messaging - Without Motion

Location Messages Tab

- **Interval Messaging** - The SmartOne can be configured to report at a specific message interval specified by days, hours and minutes. The SmartOne accepts a single interval only. Initially, the default value of 12 hours will be entered for the Interval; to enter a different Interval:
 - Click the REMOVE or CLEAR button to delete the selected interval from the message Interval box.
 - Click the ADD button to accept the Interval and add it to the message Interval box.

![Interval Messaging Interface](image-url)
When selecting Time(s) of Day from Interval Messaging, the following informational warning message will be displayed:

- **Time(s) of Day Messaging** - The SmartOne can be configured to report at specific time(s) of day. The message interval box allows up to 12 times of day to send Location Messages. The minimal interval between Time of Day settings is 35 minutes. Initially, there will be no Time(s) of Day entered in the message interval box. Create a Time of Day interval by selecting Hours and/or Minutes then:
 - Click the **ADD** button to accept the interval and add it to the message interval box.
 - Click the **REMOVE** button to delete the selected time of day from the message interval box.
 - Click the **CLEAR** button to delete all the time of day(s) in the message interval box.
Input Settings Tabs

The Input Settings Tab allows a user to select either a Status Changed Message or an Undesired Status Message for each SmartOne Input. The program will not allow a user to select both types for each Input.

- **Status Changed Message** - The SmartOne has two inputs that can be configured to send a Status Changed Message once the selected input Opens, Closes, or Both. The Message sent can either contain or not contain the GPS coordinates of the device at the time the status of the input(s) changed.

- **Undesired State Message** - The SmartOne can be configured to send messages throughout the time the input is in the undesired state, either to the Open or Closed position. The message interval while the input is active can be configured in Days, Hours, and Minutes. Once the input is disabled, the SmartOne will return to the message interval or time(s) of day for Location Messages.
- **Accumulate/Count Message** - The SmartOne can accumulate hours and count events while input 1 or input 2 is enabled. The SmartOne can send an accumulate/count message once the configurable intervals are specified in days, hours, and minutes.

- **Message Interval** – If a Status Changed Message or an Undesired Status Message was selected for either Input, the following message will be displayed:

- If Time(s) of Day Messaging was selected, user will specify the times in the Location Message Tab.
Options Tab

- **Device Turned On Message** - The SmartOne is configured to send a Device Turned On Message on Power-up by default.
- **Interval for Replace Battery Message** - The SmartOne can be configured to transmit a Replace Battery message based on a low battery condition.
 - To turn this feature on, select the Enabled checkbox.
 - Configuration range extends from 0 to 45 days in steps of a day. The default is 1 day.
 - The SmartOne will detect low battery conditions while at least 100 more messages can still be transmitted.
- **Interval for Diagnostic Message** - The SmartOne can send a diagnostic message with information on the diagnostic status of the device.
 - To turn this feature on, select the Enabled checkbox.
 - The diagnostic message includes battery status, GPS average search time, GPS fails and number of transmissions since last diagnostic message.
 - Transmit interval of diagnostic messages with a transmission rate from 1 to 45 days. The default is 30 days.
Standard Messaging Mode - With Motion

Motion Settings Tab

The Motion Settings Tab of the Configuration Software is used to define the Message Interval while In Motion. This tab also contains the Vibration Detection Settings, which defines how the sensitivity of the vibration sensor and how it determines the device is In Motion.

- **Message Interval while In Motion** - This parameter defines the transmission interval of location messages while SmartOne is In Motion with a transmission rate between 5 minutes to 45 Days. The default is 10 minutes. To turn on this feature, select the Enabled checkbox.

- **Vibration Detection Settings Button** - This button activates the Vibration Detection Settings window. This window contains settings to define how the motion sensor determines that the SmartOne is in a state of vibration. These parameters include Accelerometer Sensitivity, Vibration Sensor Sensitivity, Time to be in a State of Vibration and the Time to be in a State of Lacking Vibration.
 - **SmartOne C: Accelerometer Sensitivity**. The vibration sensor has a range of sensitivity from 2 to 7 (2 being most sensitive and 7 being least sensitive). The smaller the sensitivity level, the more sensitive the motion sensor would be to movement.
 - **SmartOne B: Vibration Sensor Sensitivity**. The vibration sensor has a range of sensitivity from 4 to 31 (4 being most sensitive and 31 being least sensitive). The smaller the sensitivity level, the more sensitive the motion sensor would be to movement.
 - **Time to be in a State of Vibration**. Time the motion sensor must be above the sensitivity level before being in a State of Vibration. If the device senses continuous vibration for a period of time less than the specified in this parameter, the device will ignore the vibration and will not enter into a State of Vibration.
 - **Time to be in a State of Lacking Vibration**. Time the vibration sensor must be below the sensitivity level before in a State of Lacking Vibration.

Location Messages Tab

- **Interval Messaging** - The SmartOne can be configured to report at a specific message interval specified by days, hours and minutes. The SmartOne accepts a single interval only. Initially, the default value of 12 hours will be entered for the Interval; to enter a different Interval:
- Click the **REMOVE** or **CLEAR** button to delete the selected interval from the message Interval box.
- Click the **ADD** button to accept the Interval and add it to the message Interval box.

When selecting Time(s) of Day from Interval Messaging, the following informational warning message will be displayed:

Time(s) of Day Messaging - The SmartOne can be configured to report at specific time(s) of day. The message interval box allows up to 12 times of day to send Location Messages. The minimal interval between Time of Day settings is 35 minutes. Initially, there will be no Time(s) of Day entered in the message interval box. Create a Time of Day interval by selecting Hours and/or Minutes then:

- Click the **ADD** button to accept the interval and add it to the message interval box.
- Click the **REMOVE** button to delete the selected time of day from the message interval box.
- Click the **CLEAR** button to delete all the time of day(s) in the message interval box.
Input Setting Tabs

The Input Settings Tab allows a user to select either a Status Changed Message or an Undesired Status Message for each SmartOne Input. The program will not allow a user to select both types for each Input.

- **Status Changed Message** - The SmartOne has two inputs that can be configured to send a Status Changed Message once the selected input opens, closes, or both. The Message sent may or may contain the GPS coordinates of the device at the time the status of the input(s) changed. The SmartOne can also send this message when it enters or exits the Vibration State, or both.

- **Undesired State Message** - The SmartOne can be configured to send messages throughout the time the input is in the undesired state, either to opened or closed position. The message interval while the input is active can be configured in Days, Hours, and Minutes. Once the input is deactivated, the SmartOne will return to the message interval or time (s) of day for Location Messages. The SmartOne can also be configured to send messages throughout the time the device is in a State of Vibration or in a State of Lacking Vibration.
- **Accumulate/Count Message** - The SmartOne can accumulate hours and events while input 1 or input 2 is enabled. The SmartOne can send an accumulate/count message once the configurable number of hours or events have been reached. In addition, The SmartOne can send the actual value of accumulated hours and events at configurable intervals specified in days, hours, and minutes.
 - Message Interval – If a Status Changed Message or an Undesired Status Message was selected for either Input, the following message will be displayed:
 - If Vibration was Enabled, the user is to select State of Vibration(SOV) or State of Lacking Vibration(SOLV) and the interval of when to send the Accumulate message.
 - If Times of Day Messaging was selected, user will specify the times in the Location Message Tab.
Options Tab

- **Device Turned On Message** - The SmartOne is configured to send a Device Turned On Message on Power-up by default.
- **Interval for Replace Battery Message** - The SmartOne can be configured to transmit a Replace Battery message based on a low battery condition.
 - To turn this feature on, select the Enabled checkbox.
 - Configuration range extends from 0 to 45 days in steps of a day. The default is 1 day.
 - The SmartOne will detect low battery conditions while at least 100 more messages can still be transmitted.
- **Interval for Diagnostic Message** - The SmartOne can send a diagnostic message with information on the diagnostic status of the device.
 - To turn this feature on, select the Enabled checkbox.
 - The diagnostic message includes battery status, GPS average search time, GPS fails and number of transmissions since last diagnostic message.
 - Transmit interval of diagnostic messages with a transmission rate from 1 to 45 days. The default is 30 days.
Reduced Messaging Mode

Change Location Tab

- **Inside Change of Location Area** The parameters in this section define the functionality of the device while inside its Change of Location Area while in Reduced Messaging Mode.

- **Change of Location Range** - Specifies the length (in meters, kilometers, yards, or miles) from the center of the Change of Location Area.

- **Message Interval inside Change of Location Area** - The SmartOne can be configured to transmit messages while inside the Change of Location Area. This parameter allows you to configure the message interval inside the Change of Location Area in days, hours and minutes. In the Reduced Messaging Mode, the asset will send infrequent messages if asset is in its Change of Location Area.

- **Position Check Interval while in State of Vibration** - The SmartOne can be configured to check GPS coordinates at a rate different from the transmission rate. This interval will determine the accuracy in time on how quickly the device will sense that it has left its Change of Location Area.
- **Vibration Detection Settings Button** - This button activates the Vibration Detection Settings window. This window contains settings to define how the motion sensor determines that the SmartOne is in a state of vibration. These parameters include Accelerometer Sensitivity, Vibration Sensor Sensitivity, Time to be in a State of Vibration and the Time to be in a State of Lacking Vibration.

- **SmartOne C: Accelerometer Sensitivity.** The vibration sensor has a range of sensitivity from 2 to 7 (2 being most sensitive and 7 being least sensitive). The smaller the sensitivity level, the more sensitive the motion sensor would be to movement.

- **SmartOne B: Vibration Sensor Sensitivity.** The vibration sensor has a range of sensitivity from 4 to 31 (4 being most sensitive and 31 being least sensitive). The smaller the sensitivity level, the more sensitive the motion sensor would be to movement.

- **Time to be in a State of Vibration.** Time the motion sensor must be above the sensitivity level before being in a State of Vibration. If the device senses continuous vibration for a period of time less than the specified in this parameter, the device will ignore the vibration and will not enter into a State of Vibration.

- **Time to be in a State of Lacking Vibration.** Time the vibration sensor must be below the sensitivity level before in a State of Lacking Vibration.

- **Abort Save/Save Settings buttons.** Perform requested function of settings.

- **Outside Change of Location Area** - The parameters in this section define the functionality of the device while outside its Change of Location Area.

- **Change of Location Alert Message** - The SmartOne can be configured to send a Change of Location Area Alert message when the device leaves the Change of Location Area. This special message can be processed by the back office application to send a notification to a cellular phone or to an email account that the asset has left the Change of Location Area. The number of Change of Location Area Alert messages sent by the device is set to 1 and cannot be altered by the user.

- **In Motion Interval** - This parameter determines the message interval once the SmartOne device is outside the Change of Location Area and In Motion.

- **Change of Location Re-Center Message** - If Enabled, once the SmartOne creates a new Change of Location Area after entering the At Rest State, it will send a Change of Location Re-Center Message.
Input Settings Tabs

The Input Settings Tab allows a user to select either a Status Changed Message or an Undesired Status Message for each SmartOne Input. The program will not allow a user to select both types for each Input.

- **Status Changed Message** - The SmartOne has two inputs that can be configured to send a Status Changed Message once the selected input opens, closes, or both. The Message sent may or may contain the GPS coordinates of the device at the time the status of the input(s) changed. The SmartOne can also send this message when it enters or exits the Vibration State, or both.

- **Undesired State Message** - The SmartOne can be configured to send messages throughout the time the input is in the undesired state, either to opened or closed position. The message interval while the input is active can be configured in Days, Hours, and Minutes. Once the input is deactivated, the SmartOne will return to the message interval or time(s) of day for Location Messages. The SmartOne can also be configured to send messages throughout the time the device is in a State of Vibration or in a State of Lacking Vibration.
- **Accumulate/Count Message** - The SmartOne can accumulate hours and events while input 1 or input 2 is enabled. The SmartOne can send an accumulate/count message once the configurable number of hours or events have been reached. In addition, The SmartOne can send the actual value of accumulated hours and events at configurable intervals specified in days, hours, and minutes.

- **Message Interval** – If a Status Changed Message or an Undesired Status Message was selected for either Input, the following message will be displayed:

 - If Vibration was Enabled, the user is to select State of Vibration(SOV) or State of Lacking Vibration(SOLV) and the interval of when to send the Accumulate message.
Options Tab

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device Turned On Message</td>
<td>The SmartOne is configured to send a Device Turned On Message on Power-up by default.</td>
</tr>
<tr>
<td>Interval for Replace Battery Message</td>
<td>The SmartOne can be configured to transmit a Replace Battery message based on a low battery condition.</td>
</tr>
<tr>
<td></td>
<td>To turn this feature on, select the Enabled checkbox.</td>
</tr>
<tr>
<td></td>
<td>Configuration range extends from 0 to 45 days in steps of a day. The default is 1 day.</td>
</tr>
<tr>
<td></td>
<td>The SmartOne will detect low battery conditions while at least 100 more messages can still be transmitted.</td>
</tr>
<tr>
<td>Interval for Diagnostic Message</td>
<td>The SmartOne can send a diagnostic message with information on the diagnostic status of the device.</td>
</tr>
<tr>
<td></td>
<td>To turn this feature on, select the Enabled checkbox.</td>
</tr>
<tr>
<td></td>
<td>The diagnostic message includes battery status, GPS average search time, GPS fails and number of transmissions since last diagnostic message.</td>
</tr>
<tr>
<td></td>
<td>Transmit interval of diagnostic messages with a transmission rate from 1 to 45 days. The default is 30 days.</td>
</tr>
</tbody>
</table>
Theft Alert Mode

Change Location Tab

- **Inside Change of Location Area** The parameters in this section define the functionality of the device while inside its Change of Location Area while in Reduced Messaging Mode.

- **Change of Location Range** - Specifies the length (in meters, kilometers, yards, or miles) from the center of the Change of Location Area.

- **Message Interval inside Change of Location Area** - The SmartOne can be configured to transmit messages while inside the Change of Location Area. This parameter allows you to configure the message interval inside the Change of Location Area in days, hours and minutes. In the Reduced Messaging Mode, the asset will send infrequent messages if asset is in its Change of Location Area.

- **Position Check Interval while in State of Vibration** - The SmartOne can be configured to check GPS coordinates at a rate different from the transmission rate. This interval will determine the accuracy in time on how quickly the device will sense that it has left its Change of Location Area.

- **Vibration Detection Settings Button** - This button activates the Vibration Detection Settings
window. This window contains settings to define how the motion sensor determines that the SmartOne is in a state of vibration. These parameters include Accelerometer Sensitivity, Vibration Sensor Sensitivity, Time to be in a State of Vibration and the Time to be in a State of Lacking Vibration.

- **SmartOne C: Accelerometer Sensitivity.** The vibration sensor has a range of sensitivity from 2 to 7 (2 being most sensitive and 7 being least sensitive). The smaller the sensitivity level, the more sensitive the motion sensor would be to movement.

- **SmartOne B: Vibration Sensor Sensitivity.** The vibration sensor has a range of sensitivity from 4 to 31 (4 being most sensitive and 31 being least sensitive). The smaller the sensitivity level, the more sensitive the motion sensor would be to movement.

- **Time to be in a State of Vibration.** Time the motion sensor must be above the sensitivity level before being in a State of Vibration. If the device senses continuous vibration for a period of time less than the specified in this parameter, the device will ignore the vibration and will not enter into a State of Vibration.

- **Time to be in a State of Lacking Vibration.** Time the vibration sensor must be below the sensitivity level before in a State of Lacking Vibration.

- **Abort Save/Save Settings buttons.** Perform requested function of settings.

- **Outside Change of Location Area.** The parameters in this section define the functionality of the device while outside its Change of Location Area.

- **Change of Location Alert Message.** The SmartOne can be configured to send a Change of Location Area Alert message when the device leaves the Change of Location Area. This special message can be processed by the back office application to send a notification to a cellular phone or to an email account that the asset has left the Change of Location Area. The number of Change of Location Area Alert messages sent by the device is set to 1 and cannot be altered by the user.

- **In Motion Interval.** This parameter determines the message interval once the SmartOne device is outside the Change of Location Area and In Motion.

- **In Theft Alert Mode, the device will continue to send messages outside it Change of Location Area at the specified In Motion message interval until the device is Re-Centered by turning the connector in the device in the OFF and ON position.**

- **The device will create a new Change of Location Area in the Theft Alert Mode immediately after turning ON the device using the connector.**

- **At Rest Interval.** This parameter determines the message interval once device is outside the Change of Location Area and At Rest. The device is considered to be at rest when the comparison of a new GPS reading to a previous GPS reading indicates that the tracker has not changed location by more than a specified minimum distance.

Input Settings Tab

The Input Settings Tab allows a user to select either a Status Changed Message or an Undesired Status Message for each SmartOne Input. The program will not allow a user to select both types for each Input.
- **Status Changed Message** - The SmartOne has two inputs that can be configured to send a Status Changed Message once the selected input opens, closes, or both. The Message sent may or may contain the GPS coordinates of the device at the time the status of the input(s) changed. The SmartOne can also send this message when it enters or exits the Vibration State, or both.

- **Undesired State Message** - The SmartOne can be configured to send messages throughout the time the input is in the undesired state, either to opened or closed position. The message interval while the input is active can be configured in Days, Hours, and Minutes. Once the input is deactivated, the SmartOne will return to the message interval or time(s) of day for Location Messages. The SmartOne can also be configured to send messages throughout the time the device is in a State of Vibration or in a State of Lacking Vibration.
Accumulate/Count Message - The SmartOne can accumulate hours and events while input 1 or input 2 is enabled. The SmartOne can send an accumulate/count message once the configurable number of hours or events have been reached. In addition, The SmartOne can send the actual value of accumulated hours and events at configurable intervals specified in days, hours, and minutes.

Message Interval – If a Status Changed Message or an Undesired Status Message was selected for either Input, the following message will be displayed:

- If Vibration was Enabled, the user is to select State of Vibration(SOV) or State of Lacking Vibration(SOLV) and the interval of when to send the Accumulate message.
Options Tab

- **Device Turned On Message** - The SmartOne is configured to send a Device Turned On Message on Power-up by default.
- **Interval for Replace Battery Message** - The SmartOne can be configured to transmit a Replace Battery message based on a low battery condition.
 - To turn this feature on, select the Enabled checkbox.
 - Configuration range extends from 0 to 45 days in steps of a day. The default is 1 day.
 - The SmartOne will detect low battery conditions while at least 100 more messages can still be transmitted.
- **Interval for Diagnostic Message** - The SmartOne can send a diagnostic message with information on the diagnostic status of the device.
 - To turn this feature on, select the Enabled checkbox.
 - The diagnostic message includes battery status, GPS average search time, GPS fails and number of transmissions since last diagnostic message.
 - Transmit interval of diagnostic messages with a transmission rate from 1 to 45 days. The default is 30 days.
5. Messages

The SmartOne produces on-air messages conforming to the Globalstar specified format. See Appendix G through J for detailed examples of various message decoding.

The data being communicated to the end user is contained entirely in the 72 bit (9 byte) field.

This section will describe the use of the 9 byte user information segment for communicating the range of information that the SmartOne is able to convey to the user.

Note: User information is also referred to as the Message Payload.

Global Message Type

Bits 0 and 1 in the first byte of the user data define the Global Message Type; there are four total global types. Types 0 and 3 are applicable to the function and features of the SmartOne, type 1 and 2 are user defined message types.

- **Type 0** - Standard Message: All of the various message types that contain Latitude and Longitude data that are transmitted by the SmartOne will be of this type.
- **Type 1** - Truncated Message: This message type provides for up to 2 bytes plus 6 bits of user data to be appended to the status byte and GPS location information.
- **Type 2** - Raw Message: This message type provides for up to 8 bytes plus 6 bits of user data.
- **Type 3** - Non Standard Message: This is the message type that covers the category "none of the above". The SmartOne will use this message type for messages that do not contain Latitude and Longitude data. Smart One message types which fall into this category include Accumulate/Count messages, Diagnostic messages, Contact Service Provider messages and Low Battery messages.

Type 0 Message Class

Message Format

The below table displays the format of all standard messages. Specific variants of the message will be shown individually in the following subsections.

<table>
<thead>
<tr>
<th>Byte #</th>
<th>Variable</th>
<th>Bits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Type Field</td>
<td>2</td>
<td>Bit (1:0) = 0 = message type:</td>
</tr>
<tr>
<td>0</td>
<td>Battery State</td>
<td>1</td>
<td>Bit (2) 0 = Good battery. 1 = Replace battery.</td>
</tr>
<tr>
<td>0</td>
<td>GPS Data Valid</td>
<td>1</td>
<td>Bit (3) 0 = GPS Data valid in this message. 1 = GPS failed in this message cycle, ignore Latitude and Longitude fields.</td>
</tr>
<tr>
<td>0</td>
<td>Missed Input State</td>
<td>2</td>
<td>Bit (4) Missed Input 1. A value of 1 in this bit means that an input state change of Input 1 was missed due to the transmission of a higher priority message. Bit (5) = Missed Input 2. A value of 1 in this bit means that an input state change of Input 2 was missed due to the transmission of a higher priority message.</td>
</tr>
<tr>
<td>0</td>
<td>GPS Fail Counter</td>
<td>2</td>
<td>Bit (7:6) = GPS fail counter. Counts up to a maximum value of 3 upon GPS failure.</td>
</tr>
</tbody>
</table>
| Bit 1,2,3,4, 5,6 | Latitude/Longitude | 48 | Byte 1 = Latitude MSByte
Byte 2 = Latitude
Byte 3 = Latitude LSBYTE
Byte 4 = Longitude MSByte
Byte 5 = Longitude
Byte 6 = Longitude LSBYTE
360 degrees of Longitude coded in signed binary with 3 bytes and 180 degrees of Latitude coded in signed binary with 3 bytes.
Positive Longitudes correspond to East Longitudes
Positive Latitudes correspond to North Latitudes
See Appendix G for a Lat/Long decoding example |
|---|---|---|---|
| 7 | Input Status | 4 | These bits reflect the state of the inputs and indicate which one, if any, triggered an Input Status Changed message.
Bit 0: Input 1 change: 0 = Did not trigger message, 1 = Triggered message.
Bit 1: Input 1 state: 0 = Closed, 1 = Open
Bit 2: Input 2 change: 0 = Did not trigger message, 1 = Triggered message
Bit 3: Input 2 state: 0 = Closed, 1 = Open |
| 7 | Message Sub-Type | 4 | Bits (7:4) message sub-type code. See subtypes below:
Value is 0 in the location message.
Value is 1 in the Device Turned On message.
Value is 2 in the Change of Location Area alert message.
Value is 3 in the Input Status Changed message.
Value is 4 in the Undesired Input State message.
Value is 5 in the Re-Centering message. |
| 8 | RESERVED | 3 | Bits (2:0) RESERVED in SmartOne |
| 8 | Vibration Triggered Message | 1 | Bit (3) – Value 1 = This message is being sent because Transmit on Change of Vibration State is selected and the vibration just changed state, or Undesired Vibration State is selected and the vibration is in the undesired state. Value 0 = This message is being transmitted for a reason other than the above reasons. |
| 8 | Vibration Bit. | 1 | Bit (4) – Value 1 = Unit is in a state of vibration. Value 0 = Unit is not in a state of vibration. |
| 8 | 2D | 1 | Bit (5) – Value 1 = GPS data reported is from a 2D fix. (Only 3 satellites were used in the fix.) Value 0 = GPS data reported is from a 3D fix. |
| 8 | Motion | 1 | Bit (6) – Value 1 = Device was In-Motion when the message was transmitted. Value 0 = Device was At-Rest when the message was transmitted. |
| 8 | Fix Confidence Bit. | 1 | Bit (7) 0=High confidence in GPS fix accuracy, 1=Reduced confidence in GPS fix accuracy. |
Location Message

This is the message that is transmitted on an interval. When this message is received, it indicates that the transmission is due to a scheduled interval at either the At Rest rate or In Motion rate. Whether the device is At Rest or In Motion can be determined by the Motion bit (Byte 8, bit 6).

The Location Message Subtype field of this message, contained in byte 7; bits 4-7 have a value of zero 0.

Device Turned On Message

This is the message transmitted at power on.

The Standard Message Subtype field of this message, contained in byte 7; bits 4-7, has a value of 1.

Change of Location Area Alert Message

This is the message transmitted when the SmartOne detects that it has left its Change of Location Area.

The Standard Message Subtype field of this message, contained in byte 7; bits 4-7, has a value of 2.

Input Status Changed Message

This is the message that will be transmitted upon the change of state of the inputs if it is enabled and as selected by the user:

- Input 1 open, Input 1 closed, or Input 1 both(open or closed)
- Input 2 open, Input 2 closed, or Input 2 both(open or closed)

The Standard Message Subtype field of this message, contained in byte 7; bits 4-7, has a value of 3.

The Input Status Value of byte 7; bits 0-3 in the message indicates which input changed state to trigger the message and also reports the states of both inputs.

Undesired Input State Message

This is the message that is transmitted when the user has selected an undesired input state to cause a different report rate. When this Mode is enabled, the user defined Undesired Input State report rate supersedes the At Rest and In Motion report rates when the Input(s) is (are) in an undesired state.

The Standard Message Subtype field of this message, contained in byte 7; bits 4-7, has a value of 4.

The Input Status portion of byte 7; bits 0-3 in the message indicates which Input(s) are in the undesired state and triggering the Undesired Input State report rate.

Re-Center Message

The Re-Center message is transmitted when Reduced Messaging Mode is selected and the SmartOne re-centers (automatically sets a new Change of Location Area).

The Standard Message Subtype field of this message, contained in byte 7; bits 4-7, has a value of 5.
Type 1 Message Class

Truncated Message Type – Single Packet

This message type provides for up to 2 bytes plus 6 bits of user data to be appended to the status byte and GPS location information. The input and status bits data of the standard message are replaced with user data from the configuration port. The Truncated message will follow the following on-air format:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Bits</th>
<th>Description</th>
</tr>
</thead>
</table>
| Status Byte | 8 | Bit (1:0) = 1 Truncated message type
 Bit (7:2) = submask data from Truncated user data |
| Latitude/Longitude | 48 | Byte 1 = Latitude MSByte
 Byte 2 = Latitude
 Byte 3 = Latitude LSByte
 Byte 4 = Longitude MSByte
 Byte 5 = Longitude
 Byte 6 = Longitude LSByte
 360 degrees of longitude coded in signed binary with 3 bytes and 180 degrees of latitude coded in signed binary with 3 bytes
 Positive longitude corresponds to East longitudes
 Positive Latitude corresponds to North latitudes
 See Appendix G for an Lat/Long decoding example |
| User Data | 16 | Byte 1 = User data byte 1
 Byte 2 = User data byte 2 |
Truncated Message Type – Multiple Packet Version

The Globalstar simplex messaging protocol provides for single and multiple packet messaging. In the event that the user application requests a user data length exceeding 9 bytes, the SmartOne (running firmware version 2.1 or later) will automatically "packetize" the message, that is, transmit it as multiple 9 byte packets. The ground station appliqué will reverse the process, "de-packetizing" the message back into a single ("long") message. From the user application point of view, this eliminates the 9 byte limitation allowing the user to compose longer messages transparently. They are presented to the user by the Globalstar back office as complete messages of a length longer than 9 bytes. The SmartOne supports user-defined messages (Class 1 and 2) of up to 54 bytes.

This message type provides for up to 47 bytes plus 6 bits of user data to be appended to the status byte and GPS location information. The input and status bits data of the standard message are replaced with user data from the configuration port. Note: Total message length will be a minimum of 9 bytes in length, and a maximum of 54 bytes in length, and the length sent to the user will always be divisible by 9. The Truncated message will follow the following on-air format:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Bits</th>
<th>Description</th>
</tr>
</thead>
</table>
| Status Byte | 8 | Bit (1:0) = 1 = Truncated message type
Bit (7:2) = submask data from Truncated user data |
| Latitude/Longitude | 48 | Byte1 = Latitude MSByte
Byte 2 = Latitude
Byte 3 = Latitude LSByte
Byte 4 = Longitude MSByte
Byte 5 = Longitude
Byte 6 = Longitude LSByte
360 degrees of longitude coded in signed binary with 3 bytes and 180 degrees of latitude coded in signed binary with 3 bytes
Positive longitude corresponds to East longitudes
Positive Latitude corresponds to North latitudes
See Appendix G for an Lat/Long decoding example |
| User Data | Variable | Byte 1 = User data byte 1
Byte 2 = User data byte 2
Byte 3 = User data byte 3
......
......
Byte 47 = User data byte 47 |
Type 2 Message Class

Raw Message Type – Single Packet Version

Message type 2 shall be a Raw Payload message. This message type provides for up to 8 bytes plus 6 bits of user data. This mode is provided to enable the user to directly send a single data burst through the network. The only bits not accessible to the user are the message type bits needed by the receiving data processor to delineate message type associated to the transmit ID. User data less than the full payload will be zero padded as necessary.

The Raw Payload message will follow the following on-air format:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Bits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status Byte</td>
<td>8</td>
<td>Bit (1:0) = 2 = Raw message type</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit (7:2) = submask data from Raw Payload user data</td>
</tr>
</tbody>
</table>
| User Data | Variable | Byte 1 = User data byte 1
| | | Byte 2 = User data byte 2
| | | Byte 3 = User data byte 3
| | | Byte 4 = User data byte 4
| | | Byte 5 = User data byte 5
| | | Byte 6 = User data byte 6
| | | Byte 7 = User data byte 7
| | | Byte 8 = User data byte 8 |

Raw Message Type – Multiple Packet Version

The Globalstar simplex messaging protocol provides for single and multiple packet messaging. In the event that the user application requests a user data length exceeding 9 bytes, the SmartOne (running firmware version 2.1 or later) will automatically “packetize” the message, that is, transmit it as multiple 9 byte packets. The ground station appliqué will reverse the process, “de-packetizing” the message back into a single ("long") message. From the user application point of view, this eliminates the 9 byte limitation allowing the user to compose longer messages transparently. They are presented to the user by the Globalstar back office as complete messages of a length longer than 9 bytes. The SmartOne supports user-defined messages (Class 1 and 2) of up to 54 bytes.

Message type 2 shall be a Raw Payload message. This message type provides for up to 53 bytes plus 6 bits of user data. This mode is provided to enable the user to directly send a single data burst through the network. The only bits not accessible to the user are the message type bits needed by the receiving data processor to delineate message type associated to the transmit ID. User data less than the full payload will be zero padded as necessary. Note: Total message length will be a minimum of 9 bytes in length, and a maximum of 54 bytes in length, and the length sent to the user will always be divisible by 9.

The Raw Payload message will follow the following on-air format:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Bits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status Byte</td>
<td>8</td>
<td>Bit (1:0) = 2 = Raw message type</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bit (7:2) = submask data from Raw Payload user data</td>
</tr>
</tbody>
</table>
| User Data | Variable | Byte 1 = User data byte 1
| | | Byte 2 = User data byte 2
| | | Byte 3 = User data byte 3
| | | Byte 4 = User data byte 4
| | | Byte 5 = User data byte 5
| | | Byte 6 = User data byte 6
| | | Byte 7 = User data byte 7
| | | Byte 8 = User data byte 8
| | | Byte 9 = User data byte 9
| | | Byte 10 = User data byte 10
| | | Byte 11 = User data byte 11
| | | Byte 12 = User data byte 12
| | | Byte 13 = User data byte 13
| | | Byte 14 = User data byte 14
| | | Byte 15 = User data byte 15
| | | Byte 16 = User data byte 16
| | | Byte 17 = User data byte 17
| | | Byte 18 = User data byte 18
| | | Byte 19 = User data byte 19
| | | Byte 20 = User data byte 20
| | | Byte 21 = User data byte 21
| | | Byte 22 = User data byte 22
| | | Byte 23 = User data byte 23
| | | Byte 24 = User data byte 24
| | | Byte 25 = User data byte 25
| | | Byte 26 = User data byte 26
| | | Byte 27 = User data byte 27
| | | Byte 28 = User data byte 28
| | | Byte 29 = User data byte 29
| | | Byte 30 = User data byte 30
| | | Byte 31 = User data byte 31
| | | Byte 32 = User data byte 32
| | | Byte 33 = User data byte 33
| | | Byte 34 = User data byte 34
| | | Byte 35 = User data byte 35
| | | Byte 36 = User data byte 36
| | | Byte 37 = User data byte 37
| | | Byte 38 = User data byte 38
| | | Byte 39 = User data byte 39
| | | Byte 40 = User data byte 40
| | | Byte 41 = User data byte 41
| | | Byte 42 = User data byte 42
| | | Byte 43 = User data byte 43
| | | Byte 44 = User data byte 44
| | | Byte 45 = User data byte 45
| | | Byte 46 = User data byte 46
| | | Byte 47 = User data byte 47
| | | Byte 48 = User data byte 48
| | | Byte 49 = User data byte 49
| | | Byte 50 = User data byte 50
| | | Byte 51 = User data byte 51
| | | Byte 52 = User data byte 52
| | | Byte 53 = User data byte 53 |
Type 3 Message Class

The SmartOne will use the Type 3 message class for the following message types:

- Replace Battery Message – Subtype 22.
- Contact Service Provider Message – Subtype 23.

Diagnostic Message

The Diagnostic Message includes battery status, GPS average acquisition time, GPS fails and number of transmissions since the last Diagnostic Message.

Appendix I has an example of a decoded Diagnostic Message.

The format and fields of the SmartOne Diagnostic Message is shown in table 8 below.

<table>
<thead>
<tr>
<th>Byte #</th>
<th>Variable</th>
<th>Bits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Type Field</td>
<td>2</td>
<td>Bit (1:0) = 3 Non Standard message type:</td>
</tr>
<tr>
<td>0</td>
<td>Subtype</td>
<td>6</td>
<td>Bit (7:2) = 21 for Diagnostic Message. Bit (7:2) = 22 for Replace Battery Message. Bit (7:2) = 23 Contact Service Provider Message.</td>
</tr>
<tr>
<td>1</td>
<td>Number of Transmissions per Burst.</td>
<td>4</td>
<td>Bits(3:0) = Number of Transmissions (1 to 15 Transmissions)</td>
</tr>
<tr>
<td>1</td>
<td>Battery Condition</td>
<td>1</td>
<td>Bit 4: 0 = Good battery. 1 = Replace Battery</td>
</tr>
<tr>
<td>1</td>
<td>GPS Subsystem Fault</td>
<td>1</td>
<td>Bit 5: 0 = GPS system OK. 1 = Fault</td>
</tr>
<tr>
<td>1</td>
<td>Transmitter Subsystem Fault</td>
<td>1</td>
<td>Bit 6: 0 = Transmitter OK. 1 = Fault.</td>
</tr>
<tr>
<td>1</td>
<td>Scheduler Subsystem Fault</td>
<td>1</td>
<td>Bit 7: 0 = OK. 1 = Fault.</td>
</tr>
<tr>
<td>2</td>
<td>Min Interval</td>
<td>8</td>
<td>Minimum Interval between transmission attempts (5 second resolution) Default is 300 seconds</td>
</tr>
<tr>
<td>3</td>
<td>Max Interval</td>
<td>8</td>
<td>Maximum Interval between transmission attempts. Default is 600 seconds</td>
</tr>
<tr>
<td>4</td>
<td>GPS Mean Search Time</td>
<td>8</td>
<td>Unsigned binary count in seconds for mean GPS search to acquire</td>
</tr>
<tr>
<td>5,6</td>
<td># GPS Fails</td>
<td>16</td>
<td>Unsigned binary count of failed GPS attempts since last Diagnostic Message</td>
</tr>
<tr>
<td>7,8</td>
<td># Transmissions</td>
<td>16</td>
<td># of transmissions since last Diagnostic message</td>
</tr>
</tbody>
</table>
Replace Battery Message

The Replace Battery message has a format almost identical to the Diagnostic message. If enabled by the user, the Replace Battery message will be sent by the SmartOne when the battery charge level is at or below the replace battery advisement level. The message will be repeated at an interval configurable by the user for as long as the battery remains below the advisement level. The default configuration is for the Replace Battery message to be enabled and to be transmitted once per day when the battery is low.

Contact Service Provider Message

The SmartOne will send a Contact Service Provider message when an internal fault is detected. The SmartOne will send one such message upon the detection of an internal fault. It will then attempt to continue to operate normally. The SmartOne will not send another Contact Service Provider message unless the fault is determined to have cleared, and then determined to have come back again.

Accumulate/Count Message

The Accumulate/Count message is used to report the accumulation of time that an input is in a specified state as defined by the user, the accumulation of time that the device is in a State of Vibration, and/or the total transitions of the Inputs, as configured by the user. The message is transmitted either at a pre-set interval, at a point where any of the accumulation or count registers reach multiples as programmed by the user, just before rollover of any count/accumulate register, or all of the above. Appendix J has an example of a decoded Accumulate/Count message.

<table>
<thead>
<tr>
<th>Byte #</th>
<th>Variable</th>
<th>Bits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Type Field</td>
<td>2</td>
<td>Bit (1:0) = 3 Non Standard message type:</td>
</tr>
<tr>
<td>0</td>
<td>Subtype</td>
<td>6</td>
<td>Bit (7:2) = 24 Accumulate/Count message.</td>
</tr>
<tr>
<td>1, 2</td>
<td>Accumulated Input 1</td>
<td>16</td>
<td>Accumulated time that Input 1 has been in its undesired state with a resolution of 10 minutes. For example: 1 hour would be represented as a value of 6, 2 hours as a value of 12, etc. This resolution results in a rollover rate of a total time accumulation of approximately 1.25 years. (0xFFFF means that Input 1 Accumulate has been turned off)</td>
</tr>
<tr>
<td>3, 4</td>
<td>Accumulated Input 2</td>
<td>16</td>
<td>Accumulated time that Input 2 has been in its undesired state with a resolution of 10 minutes. For example: 1 hour would be represented as a value of 6, 2 hours as a value of 12, etc. This resolution results in a rollover rate of a total time accumulation of approximately 1.25 years. (0xFFFF means that Input 2 Accumulate has been turned off)</td>
</tr>
<tr>
<td>5, 6</td>
<td>Accumulated Vibration</td>
<td>16</td>
<td>Accumulated time that the SmartOne has been in a State of Vibration with a resolution of 10 minutes. For example: 1 hour would be represented as a value of 6, 2 hours as a value of 12, etc. This resolution results in a rollover rate of a total time accumulation of approximately 1.25 years. (0xFFFF means that Accumulated Vibration has been turned off)</td>
</tr>
<tr>
<td>7</td>
<td>Input 1 Count</td>
<td>8</td>
<td>The total number of openings or closings of input 1 as selected by the user. (0xFF means that Input 1 Accumulate has been turned off)</td>
</tr>
<tr>
<td>8</td>
<td>Input 2 Count</td>
<td>8</td>
<td>The total number of openings or closings of input 2 as selected by the user. (0xFF means that Input 2 Accumulate has been turned off)</td>
</tr>
</tbody>
</table>
Messaging Priority

Prioritization of Periodic Standard Message Report Rates

The SmartOne supports several rates at which it will send a Periodic standard message. Periodic versus Scheduled standard message rates are mutually exclusive. This is the priority of the different rates at which the SmartOne will send a standard message (Highest is listed first):

- Rate specified by Undesired Input State.
- Rate specified for when the SmartOne is inside its Change of Location Area.
- Rate specified for when device is In Motion. (Note, when inside the Change of Location Area, this rate affects sampling, but not reporting, as indicated by a higher priority for inside Change of Location Area.)
- Rate specified for when the device is At Rest.

Message Priorities

It is possible that message types may collide. Whenever feasible, the SmartOne will examine its known schedule and reschedule lower priority messages to occur after higher priority ones. If there is not enough time in the known schedule for all scheduled messages to be transmitted in a reasonable time, or there is insufficient memory to queue them, the lowest priority message(s) could be dropped. In any case, unscheduled messages (for example, Input Status Changed) shall cancel pending messages of lower priority and not cancel pending messages of higher priority. The following list shows the priority of message types, with the highest priority being listed first.

- Contact Service Provider
- User Defined Raw message. *
- User Defined Truncated message. *
- Change of Location Area
- Replace Battery
- Undesired Input State
- Re-Center
- Diagnostics
- Accumulate/Count
- Input Status Changed
- Device Turned On
- Normal Location (In-Motion or At-Rest).

*Note: The two user defined message types actually have equal priority. Either one will cancel the other one. If, for example, the user interface commands the device to send a Truncated message, and then, before it has time to obtain a fix and send the message, the user commands a Raw message, the Raw message will be sent.
6. Serial Commands

The SmartOne uses the I/O port for unit configuration as well as interface to remote passive and smart sensors. Two commands are provided in the unit interface to support smart sensors. External sensors that can format and communicate to the SmartOne can send user data through the SmartOne by using these two commands.

This section describes the serial interface between the SmartOne and a computer or other programming device. SmartOne will respond to any command that contains fields with invalid values with a NAK response (command field set to 0xFF).

Serial Packet Format (commands and answers)

Communication to the SmartOne will follow the following specific format:

<table>
<thead>
<tr>
<th>Preamble</th>
<th>Length</th>
<th>Cmd</th>
<th>Data</th>
<th>CRC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 byte</td>
<td>1 byte</td>
<td>1 byte</td>
<td>Variable length 0 – 54 bytes</td>
<td>2 bytes</td>
</tr>
</tbody>
</table>

Total length range permitted: 5 bytes (Data field length 0) to 59 bytes (Data field length 54).

Serial Packet Fields

The different fields are defined as:

<table>
<thead>
<tr>
<th>Preamble</th>
<th>Fixed Pattern 0xAA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>Total number of bytes in the serial packet including the preamble</td>
</tr>
<tr>
<td>Cmd</td>
<td>Command type (See table below). Responses to commands carry the same command type as the command that initiated the answer</td>
</tr>
<tr>
<td>Data</td>
<td>Data associated with the command or answer</td>
</tr>
<tr>
<td>CRC Low</td>
<td>Least significant byte of the 16-bit CRC</td>
</tr>
<tr>
<td>CRC High</td>
<td>Most significant byte of the 16-bit CRC</td>
</tr>
</tbody>
</table>
CRC Algorithm

The Security Field is a 16-bit CRC of all of the previous fields including the preamble, length, and command bytes. The remainder is initialized to all 1’s (0xFFFF) and the CRC is inverted before being sent. Following is a sample C routine that implements the algorithm using the reversed technique:

```c
WORD crc16_lsb(BYTE *pData, WORD length)
{
    BYTE i;
    WORD data, crc;
    crc = 0xFFFF;
    if (length == 0)
        return 0;

    do
    {
        data = (WORD)0x00FF & *pData++;
        crc = crc ^ data;
        for (i = 8; i > 0; i--)
        {
            if (crc & 0x0001)
                crc = (crc >> 1) ^ 0x8408;
            else
                crc >>= 1;
        }
    } while (--length);

    crc = ~crc;
    return (crc);
}
```

As an example, for a type (0x01) “Get ID” message made up of the following bytes: AA 05 01

The following 2 byte CRC would be calculated: D5 50

The complete message sent by the host to the SmartOne is: AA 05 01 50 D5

Serial Packet Types

<table>
<thead>
<tr>
<th>Cmd</th>
<th>Description/Usage/Comment</th>
<th>Command Data Bytes</th>
<th>Acknowledge Data Bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x01</td>
<td>User requests the SmartOne to reply with integral ESN (Electronic Serial Number). This is the ID used by Globalstar to identify the unit</td>
<td>None</td>
<td>Four data bytes, which contain the unit ID as an unsigned integer. The MSByte is sent first. Only the 27 LSbits are non-zero</td>
</tr>
<tr>
<td>0x26</td>
<td>Send Truncated Message</td>
<td>See Truncated Message section below</td>
<td>None</td>
</tr>
<tr>
<td>0x27</td>
<td>Send Raw Message</td>
<td>See Raw Message section below</td>
<td>None</td>
</tr>
</tbody>
</table>
Send Truncated Message (serial message type 0x26)

The **SmartOne** will perform a GPS location and append user data passed to the unit via the Truncated Message command 0x26.

47 bytes plus 6 bits of user data may be sent with the standard GPS location information in a messaging burst. Two bits are set in the on-air message by the SmartOne informing the recipient that the message is the Truncated type.

The following table defines the message structure of the “data” portion of the command used to send a Truncated message.

Communication to the SmartOne will follow the following specific format:

<table>
<thead>
<tr>
<th>Byte</th>
<th>Bit</th>
<th>Parameter</th>
<th>Description</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>7.2</td>
<td>Submask Bits</td>
<td>User data bits. Bits 1:0 are reserved and will be masked by SmartOne</td>
<td>0x00</td>
</tr>
<tr>
<td>Variable</td>
<td></td>
<td>User Data</td>
<td>Supports a maximum of 47 total bytes in this field. User application (smart sensor) should transmit only as many bytes as needed (don’t pad the message) in order to keep on air packets to a minimum</td>
<td></td>
</tr>
</tbody>
</table>

Example 1 - Sending a “Truncated” User Message

The host sends:

```
AA 08 26 10 22 33 <CRC-low> <CRC-High>
```

The SmartOne would respond:

```
AA 05 26 <CRC-Low> <CRC-High>
```

What would go out over the air is:

```
11 Lat-3 Lat-2 Lon-1 Lon-2 Lon-1 22 33
```

Note: All on air messages are padded to a multiple of 9 bytes. This is the reason for the trailing zeros in this example.

Note: The least two significant bits of the first byte are always “01” for a trunc message, the remaining 6 bits make up the top 6 bits of the first byte sent in the serial command, in this example 000100xx (with the “xx” representing the two bits that the SmartOne forces to “01”).

The 22 and the 33 that the user sent are appended after the 6 bytes of latitude and longitude.
Example 2 - Using a Longer Message

The host sends:

\[
\text{AA 0D 26 10 22 33 44 55 66 77 88 <CRC-low> <CRC-High>}
\]

Note: The length field: 0D – 0D is the number 13 in hexadecimal, the length of the total serial command.

The SmartOne would respond:

\[
\text{AA 05 26 <CRC-Low> <CRC-High>}
\]

What would go out over the air is:

11 Lat-3 Lat-2 Lat-1 Lon-3 Lon-2 Lon-1 22 33 44 55 66 77 88 00 00 00 00

Send Raw Message (serial message type 0x27)

The SmartOne will send raw user data using the Raw Payload command 0x27.

53 bytes plus 6 bits of user data may be sent. Two bits are set in the on-air message by the SmartOne informing the recipient that the message is Raw.

The following table defines the message structure used to send a Raw message.

<table>
<thead>
<tr>
<th>Byte</th>
<th>Bit</th>
<th>Parameter</th>
<th>Description</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>7.2</td>
<td>Submask Bits</td>
<td>User data bits. Bits 1:0 are reserved and will be masked by SmartOne</td>
<td>0x00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Variable</td>
<td>User Data</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Any user data Supports a maximum of 53 total bytes in this field. User application (smart sensor) should transmit only as many bytes as needed (don’t pad the message) in order to keep on air packets to a minimum</td>
<td></td>
</tr>
</tbody>
</table>

Example 1 - Sending a Raw User Message:

The Host sends:

\[
\text{AA 0E 27 10 22 33 44 55 66 77 88 99 <CRC-low> <CRC-high>}
\]

The SmartOne Responds:

\[
\text{AA 05 27 <CRC-low> <CRC-high>}
\]

What actually goes out over the air is:

12 22 33 44 55 66 77 88 99

Note: The least two significant bits of the first byte are always “10” for a raw message (a HEX or decimal value of “2”, the remaining 6 bits make up the top 6 bits of the first byte sent in the serial command, in this example 000100xx (with the “xx” representing the two bits that the SmartOne forces to “10”).
Example 2 - Using a Longer Message:

The Host sends:

```
AA 21 27 10 22 33 44 55 66 77 88 99 AA BB CC DD EE FF 11 22 33 44 55 66 77 88 99 AA 44 56 78 <CRC-low> <CRC-high>
```

Note: The length field, the command contains a total of 33 bytes. The length is 21 Hexadecimal, which is equal to 33 decimal.

The SmartOne Responds:

```
AA 05 27 <CRC-low> <CRC-high>
```

What actually goes out over the air is:

```
12 22 33 44 55 66 77 88 99 AA BB CC DD EE FF 11 22 33 44 55 66 77 88 99 AA 44 56 78 00 00 00 00 00 00 00 00
```

Note: All on air messages are padded to a multiple of 9 bytes. This is the reason for the trailing zeros in this example.

A simple ACK or NAK from the SmartOne Device to the host (smart sensor):

ACKs.

```
AA 05 26 <crc crc> (for the Truncated message)
AA 05 27 <crc crc> (for the Raw message)
```

NAK:

```
AA 05 FF <crc crc> (NAK).
```

Note: As the SmartOne operates, some debugging traces come out of the serial port. Those traces should simply be ignored. Once the handshake line is pulled low, the unit is in “command mode” and debugging traces will stop.

Note: User commands will ALWAYS be responded to immediately with either an acknowledgement or a NAK (as shown in the examples above). Once an acknowledgement (or NAK) is received, the host should simply ignore the serial port until the next time it sends a command.

Note: The most common reasons for a NAK are incorrect CRC, incorrect length field, or incorrect command field (i.e. not 0x26 or 0x27 for trunc and raw respectively).

The Handshake Line

The handshake line should be pulled low before sending each serial message. The recommended use of the handshake line is:

1) Pull handshake low.
2) Wait 2-3 milliseconds.
3) Send command
4) Receive response.
5) Raise handshake high.
7. Connecting Serial Devices to the SmartOne

The SmartOne accepts a serial connection at 3 volt levels (Max), at 9600 baud. The relevant pins are TX, RX, Handshake and ground. The SmartOne can connect with devices that contain an asynchronous UART at 3 volt levels. (High State: 2.7-3 Volts, Low State: 0 Volts. Please contact Globalstar Support for more information).

CAUTION: *NEVER* attempt to connect the SmartOne directly to the pins on a computer's RS232 or USB port. The voltages in RS232/USB are too high and can damage the SmartOne.

Any deviations from the above guidelines will violate all RMA requirements and prevent any no-cost replacement.

Note: See Appendix K for information on the External Input Cables for the SmartOne.
Appendix A - Glossary of Terms

A

Accelerometer – A sensor used for detecting and measuring vibration.

Accumulate Hours – The activity time accumulated in the Inputs of the device while the Input is in the user defined state.

Activation – The activation of an ESN (electronic serial number) on the Globalstar satellite network. The process consists of programming a start and an end date for the use of the ESN and the payment of certain fees to Globalstar. Sometimes referred to as “provisioning.”

At Rest – A tracker is considered to be at rest when the comparison of a new GPS reading to a previous GPS reading indicates that the tracker has not changed location by more than a specified minimum distance. The specified minimum time and the specified minimum distance are both configuration parameters.

C

Configuration – The collection of variables that control the operating performance of a device.

Configure (configuring) – Programming (setting) the variables that control the operation performance of a tracker.

Count Events – The accumulated number of state changes in the Inputs of the device.

D

Delay To Start – Specific delay in time following the programming of the device to commence operation.

Desired State – The state of the Input in normal condition defined by the user.

E

ESN – Electronic Serial Number is a unique number assigned to each SmartOne device. The ESN Network is used by Globalstar Simplex to identify messages from the devices in the field.

F

Failed GPS reading – A GPS reading could not be processed from available GPS satellite signals.

FW Ver – Firmware version is the existing software loaded in the device main processor

G

GPS – The GPS (Global Positioning System) is a “constellation” of 24 well-spaced satellites that orbit the Earth and make it possible for people with ground receivers to pinpoint their geographic location.

GPS reading – The longitude, latitude, time, and date information obtained from processing the signals from the GPS satellites.
In Motion – The unit is considered to be In Motion when there is a State of Vibration – and – when a comparison of a new GPS reading to a previous GPS reading indicates the device has changed location by at least a specified minimum distance (100 meters by default).

Inaccurate GPS reading – The longitude and latitude information obtained from processing the signals from the GPS satellites when a tracker cannot observe an adequate number of satellites; the GPS signals were jammed by electronic interference; the GPS signals were reflected from objects creating multi-path conditions; or weather conditions distorted the GPS signals. An inaccurate GPS reading may have longitude and latitude errors of a mile or more.

Input – A digital channel in the device that allows the detection of switch stage changes. The inputs are dry contact inputs, ON/OFF.

Message – A collection of information that is transmitted in a group over the satellite network.

Message Interval – The amount of time specified by the user between Location Messages. The SmartOne transmits a Location Message once the Message Interval has elapsed. The internal clock on the device is reset to the interval time after each transmission. The SmartOne is in low power consumption Mode during the interval to preserve battery life.

Message Time(s) of Day – The specific time of day in military format for the SmartOne to transmit Location Messages. The SmartOne is in low power consumption Mode between the specific times of day to preserve battery life.

Message Transmission – The process of sending a message over the satellite network. The process includes sending a message multiple times to improve the transmission success rate.

Number of message repeats – The number of times a message is sent in a message transmission with the same Unique Message Number(UMN). The number of message repeats is configurable during the tracker set up process. Globalstar only counts repeated messages as one message if it is received three times or less. If the same message is received more than three times, Globalstar may count the message as more than one message for billing purposes.

Self Test – An internal unit test that is performed by the processor, checking for the proper operation of functions.

State of Lacking Vibration – The motion sensor is indicating a cease of vibration when the number of vibration pulses per minute is lower than the Level of Sensitivity for Vibration Sensor number for the time required to determine if a State of Vibration has ceased.
Time to be in a State of Lacking Vibration – a configurable parameter that sets the period of time vibration has to be absent to determine if a State of Vibration has ceased.

Time to be in a State of Vibration – a configurable parameter that sets the period of time used to determine if a State of Vibration exists.

Undesired State Message – The SmartOne sends this message at a user defined interval while any of its Inputs are in the undesired state selected by the user, either closed or opened.
Appendix B - Technical Support

We suggest VARs reference our online content at our Globalstar VAR Support Website http://var.globalstar.com/ prior to contacting our VAR Support. The content located there should address most activation/provisioning inquiries and minor frequently asked questions concerning business account management functions. Please create an account by accessing this site and clicking on Sign Up for Access Here.

For all other support issues, please contact Globalstar, Inc. at our corporate headquarters:

- Email: varsupport@globalstar.com.
- Phone: +1 (985) 335-1590
Appendix C - RF Radiation Exposure Statement

This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment. End users must follow the specific operating instructions for satisfying RF exposure compliance. The antenna(s) used for this transmitter must be installed to provide a separation distance of at least 20 cm from all persons and must not be co-located or operating in conjunction with any other antenna or transmitter. NOTE: the SmartOneC antenna is located under the embossed label that states “This side towards sky”.

RAPPORT D'EXPOSITION DE RAYONNEMENT DE LA FCC RF Cet equipment est conforme aux limites d'exposition de rayonnement de la FCC RF determinees pour un environnement non controle. Cet equipment devrait etre installe et actionne avec une distance minimum de 20 cm entre le radiature et votre corps.
Appendix D - Regulatory Notices

FCC/IC Notices

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy, and if it is not installed and used in accordance with the instruction manual, it may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference, in which case the user will be required to correct the interference at his own expense.

Modifications: Any modifications made to this device that are not approved by Globalstar, Inc. may void the authority granted to the user by the FCC to operate this equipment.

This Class A digital apparatus complies with Canadian ICES-003.

CAN ICES-3(A)/NMB-3(A)

This device complies with the requirements for Radio Astronomy Site avoidance as specified by the Globalstar National Science Foundation agreement of 2001. It is compliant with CFR25.213.

This device automatically adjusts its transmission frequency according to its location and is compliant with international regulatory requirements.

Avis de la FCC/IC

Cet équipement a été testé et respecte les limitations d'un dispositif numérique de Classe A, conformément à la Partie 15 du Règlement FCC. Ces limitations sont conçues afin de fournir une protection raisonnable contre les interférences nuisibles lorsque l’équipement est utilisé dans un environnement commercial. Cet équipement génère, utilise et peut émettre rayonnement de fréquence radio, et s’il n’est pas installé et utilisé en conformité avec le manuel d’instructions, il peut causer des interférences nuisibles aux communications radio. L’utilisation de cet équipement dans une zone résidentielle est susceptible de causer des interférences nuisibles, auquel cas l’utilisateur sera tenu de corriger les interférences à ses frais.

Modifications: Toutes modifications apportées à ce dispositif qui n’ont pas été approuvées par Globalstar, Inc., peut annuler le droit accordé à l’utilisateur par la FCC d’opérer cet équipement.

Cet appareil numérique de Classe B est conforme au standard canadien ICES-003.

CAN ICES-3(A)/NMB-3(A)1

Ce dispositif ajuste automatiquement sa fréquence de transmission en fonction de sa position et est conforme avec les exigences réglementaires internationales.
CE Notices

DECLARATION OF CONFORMITY FOR EUROPEAN CUSTOMERS

Hereby, Globalstar declares that this SmartOne C is in compliance with the essential requirements and other relevant provisions of Directive 2014/53/EU. The declaration of conformity may be consulted at www.Globalstar.com/Regulatory.

SmartOneC Transmit Frequencies: 1611.25 Mhz - 1618.75 Mhz (4 Channels)

SmartOneC Max Power Out: 23.46 dBm EIRP

Not to be Marketed in the Republic of Ireland
Appendix E – General Warnings

Warning - Modifications: Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

Warning - Replaceable Batteries - Caution: Risk of explosion of battery if replaced by an incorrect type. Dispose of used batteries according to the manufacturer's instructions.

Warning – Blasting Area: To avoid interference with blasting operations, turn your SmartOne C off when in a “Blasting Area” or in areas posted “Turn off two-way radio.” Obey all signs and instructions.

Warning – Potential Explosive Atmosphere: Turn off the SmartOne C when in any area with a potentially explosive atmosphere and obey all signs and instructions.

Warning – Driving: Always follow safe driving practices and local rules and regulations regarding the use of wireless devices while driving. Always park safely prior to using the SmartOne C.

Warning - Installation and Service: Allow only authorized personnel to install or service the SmartOne C and accessories. Faulty installation or service can be dangerous and can invalidate the warranty.

Warning – External Power: When connecting external power to the SmartOne C, make sure that the supply voltage to the unit is at the rated voltage (See Appendix K). If the supply voltage to the SmartOne C is not at the rated voltage, the unit may not operate correctly and damage to the unit may occur. Also, it will void the warranty if an invalid voltage is supplied via external input and the SmartOne C is damaged.

Warning – Tightening Cover Screws: Upon replacing the Battery Compartment Cover or the Configuration Cable Cover, tighten the screws according to specification; otherwise the unit may no longer retain its water-tight capability.
Specifications

<table>
<thead>
<tr>
<th>Specifications</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensions</td>
<td>2.7” (h) x 3.25” (w) x 1” (d)</td>
</tr>
<tr>
<td></td>
<td>6.86 cm (h) x 8.26 cm (w) x 2.53 cm (d)</td>
</tr>
<tr>
<td>Weight</td>
<td>3.6 oz (with 4 batteries and mounting hardware)</td>
</tr>
<tr>
<td></td>
<td>102g (with 4 batteries and mounting hardware)</td>
</tr>
<tr>
<td>Temperature</td>
<td>-22°F to +140°F (The unit shall remain operational over the -40°F to +185°F range - may experience battery life and RF signal degradation)</td>
</tr>
<tr>
<td></td>
<td>-30°C to +60°C (The unit shall remain operational over the -40°C to +85°C range - may experience battery life and RF signal degradation)</td>
</tr>
<tr>
<td>Line Power</td>
<td>5 VDC or 8-22 VDC Regulator Cable</td>
</tr>
<tr>
<td>Battery Type</td>
<td>4 AAA 1.5V Lithium</td>
</tr>
</tbody>
</table>

Standards

<table>
<thead>
<tr>
<th>Standards</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waterproof</td>
<td>IP67 Intrusion Protection</td>
</tr>
<tr>
<td></td>
<td>IP68 Freeze – Thaw</td>
</tr>
<tr>
<td></td>
<td>IP69K High Pressure Washing</td>
</tr>
<tr>
<td>Mil Standards</td>
<td>MIL-STD-810F 95% to 100% Condensing (Humidity)</td>
</tr>
<tr>
<td></td>
<td>MIL-STD-810E Method 509.3 – 5% NaCl, 95% Distilled Water (Salt Fog)</td>
</tr>
<tr>
<td>SAE</td>
<td>SAE J1455 Random 20 Hz to 2000 Hz, 0.40 g2/Hz, One hour per axis (Vibration)</td>
</tr>
<tr>
<td></td>
<td>Thermal Shock Test</td>
</tr>
</tbody>
</table>
Appendix G – Latitude/Longitude Decoding

Example Message = 0x002B5372BFF12F0A02

<table>
<thead>
<tr>
<th>Signed integer (MSB..LSB)</th>
<th>Lat2</th>
<th>Lat1</th>
<th>Lat0</th>
<th>Long2</th>
<th>Long1</th>
<th>Long0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x 00 2B 53 72 BF F1 2F 0A 02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Calculating Latitude

Negative Latitude corresponds to Latitude in the SOUTHERN Hemisphere.
Positive Latitude corresponds to Latitude in the NORTHERN Hemisphere.

Degree_per_count_lat = (90.0/2^3)

Hex Lat = 0X2B5372 ; Conversion to Decimal = 2,839,410

Latitude = Decimal Lat bytes * Degree_per_count_lat
= 2,839,410 * (90.0/2^3)
= 30.463564 degrees NORTH

Note: If greater than 90 degrees, 180 must be subtracted from result

Calculating Longitude

Negative Longitude corresponds to Longitude in the WESTERN Hemisphere.
Positive Longitude corresponds to Longitude in the EASTERN Hemisphere.

Degree_per_count_long = (180.0/2^3)

Hex Long = 0xBF12F ; Conversion to Decimal = 12,579,119

Longitude = Decimal Long bytes * Degree_per_count_long
= 12,579,119 * (180.0/2^3)
= 269.918611

Note: If greater than 180 degrees, 360 must be subtracted from result. Therefore, 269.918611 degrees – 360 degrees = -90.081388 degrees = 90.081388 degrees WEST
Appendix H – Standard Message Decoding

Message Example = 0xC02B5387BF129090C

<table>
<thead>
<tr>
<th>Byte</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binary</td>
<td>C0</td>
<td>2B</td>
<td>53</td>
<td>87</td>
<td>BF</td>
<td>12</td>
<td>90</td>
<td>09</td>
<td>OC</td>
</tr>
<tr>
<td>Latitude</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Longitude</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Byte 0 = C0**
 - Binary: 11000000 (70)
 - Bit (1:0) = 0 Standard message type
 - Bit (2) = 0 Good battery
 - Bit (3) = 0 GPS Data valid
 - Bit (4) = 0 No missed event on Input 1
 - Bit (5) = 0 No missed event on Input 2
 - Bit (7:6) = 3 GPS fail counter.

- **Byte 7 = 0 0**
 - Binary: 00001000 (64)
 - Bit (0) = 1 Input1 change triggered message
 - Bit (1) = 0 Input1 state Closed
 - Bit (2) = 0 Input2 change did not trigger message
 - Bit (3) = 1 Input2 state Open
 - **Subtype (7:4)**
 - Bits (7:4) = 0 for location message subtype

- **Byte 8 = 0 C**
 - Binary: 00001100 (60)
 - Bits (2:0) = Reserved in the SMARTONE Device
 - Bit (3) = 1 Vibration triggered message
 - Bit (4) = 0 Unit is not in a state of vibration
 - Bit (5) = 0 GPS data reported is from a 3D fix
 - Bit (6) = 0 Device was at Rest when the message was transmitted
 - Bit (7) = 0 High confidence in GPS fix accuracy

Note: The following 5 messages have the same message format as the Location Message. The only difference is the sub-type value of Byte 7.

<table>
<thead>
<tr>
<th>Sub-type Value</th>
<th>Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>Device Turned On</td>
</tr>
<tr>
<td>-2</td>
<td>Change of Location alert</td>
</tr>
<tr>
<td>-3</td>
<td>Input Status Changed</td>
</tr>
<tr>
<td>-4</td>
<td>Undesired Input State</td>
</tr>
<tr>
<td>-5</td>
<td>Re-center</td>
</tr>
</tbody>
</table>
Appendix I - Diagnostic Message Decoding

Message Example = 0x 57033C784F00000009

<table>
<thead>
<tr>
<th>Byte</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x</td>
<td>57</td>
<td>03</td>
<td>3C</td>
<td>78</td>
<td>4F</td>
<td>00</td>
<td>00</td>
<td>00</td>
<td>09</td>
</tr>
</tbody>
</table>

Byte 0: 0x 67
- Binary = 0101 0111 (7:0)
- Bits (1:0) = 3 Non Standard message type
- Bits (7:2) = 21 for Diagnostic Message

Byte 1: 0x 3
- Binary = 0000 0011 (7:0)
- Bits (3:0) = 3 Number of Transmissions
- Bit (4) = 0 Good battery
- Bit (5) = 0 GPS system OK
- Bit (6) = 0 Transmitter OK
- Bit (7) = 0 Scheduler Subsystem OK

Byte 2: 0x 3C
- Decimal = 60
- Minimum Interval between transmission attempts
 (5 second resolution, 300)

Byte 3: 0x 78
- Decimal = 120
- Maximum Interval between transmission attempts
 (5 second resolution, 800)

Byte 4: 0x 4F
- Decimal = 79
- Unsigned binary count in seconds for mean GPS search to acquire

Byte 5 & 6: 00 00
- Decimal = 0
- Unsigned binary count of failed GPS attempts since last Diagnostic Message

Byte 7 & 8: 00 09
- Decimal = 9
- # of transmissions since last Diagnostic message

Note: The following 2 messages have the same message format as the Diagnostic Message. The only difference is the value of Bits(7:2) of Byte 0

<table>
<thead>
<tr>
<th>Bits (7:2) Value</th>
<th>Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>=22</td>
<td>Replace Battery</td>
</tr>
<tr>
<td>=23</td>
<td>Contact Service Provider</td>
</tr>
</tbody>
</table>
Appendix J - Accumulate/Count Message Decoding

Message Example = 0x63FFFFFFFFFFFF7DF

<table>
<thead>
<tr>
<th>Byte</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x</td>
<td>63</td>
<td>FF</td>
<td>FF</td>
<td>FF</td>
<td>FF</td>
<td>FF</td>
<td>7D</td>
<td>FF</td>
<td></td>
</tr>
</tbody>
</table>

Byte 0 = 63
Binary = 0110 0011 (7:0)
Bits (1:0) = 3 Non Standard message type
Bits (7:2) = 24 for Accumulate/Count Message

Byte 1 & 2 = FFFF
Accumulated time that Input 1 has been in its undesired state with a resolution of 10 minutes.
0xFFFF means that Input 1 Accumulate has been turned off

Byte 3 & 4 = FFFF
0xFFFF means that Input 2 Accumulate has been turned off

Byte 5 & 6 = FFFF
Accumulated time that the SMARTONE has been in a State of Vibration with a resolution of 10 minutes.
0xFFFF means that accumulate time of vibration been turned off

Byte 7 = 7D
Decimal = 125
The total number of openings or closings of Input 1

Byte 8 = FF
0xFF means that Input 2 Accumulate count has been turned off
Appendix K - External Input Cables

Instructions and wiring diagram for SmartOne C external input cables

5v Cable (PN# 2030-0305-01)
&
22v Cable (PN# 2030-0307-01)

<table>
<thead>
<tr>
<th>Color</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown</td>
<td>Setup (Handshake from Serial Device)</td>
</tr>
<tr>
<td>Red</td>
<td>RX</td>
</tr>
<tr>
<td>Orange</td>
<td>TX (to Serial Device RX)</td>
</tr>
<tr>
<td>Light Blue</td>
<td>Dry Contact 2</td>
</tr>
<tr>
<td>White</td>
<td>Dry Contact 1</td>
</tr>
<tr>
<td>Yellow</td>
<td>Soft Power Down (Normally Open)</td>
</tr>
<tr>
<td>Green</td>
<td>Ground</td>
</tr>
<tr>
<td>Blue</td>
<td>Ground</td>
</tr>
<tr>
<td>Violet</td>
<td>Line Power +</td>
</tr>
</tbody>
</table>

NOTES

1. When using the 5V external input cable (PN# 2030-0305-01), the supply voltage applied to the Line Power + wire must be 5.0 +/- 0.25 VDC. Applying a different voltage will either damage the SmartOne C or cause it to function improperly/shutdown.

2. When using the 8-22 VDC external input cable (PN# 2030-0307-01), the supply voltage applied to the Line Power + wire must be between 8.0 VDC and 22 VDC. If less than 8 VDC is applied, the regulator will not function properly. If more than 22 VDC is applied, there is a strong possibility that the regulator inside the cable will be damaged.

3. If directly connecting your source to Line Power +, the voltage must be 5.0 VDC.

4. This cable is designed to only work with 3.3 VDC logic. Do not use with 5 VDC logic devices.

5. Be certain that unused wires do not short to each other.

6. All ground wires are common; therefore, any ground can be used with any function.

7. Battery voltage is regulated differently internal to the SmartOne unit than Line Power voltage.
Battery life is dependent on several factors:

- View of the sky
- How often the device is transmitting
- Requesting GPS fixes
- Temperature
- Sleep Current

The more often that the SmartOne transmits data, the shorter the battery life.

The below table is an example of clear sky transmissions:

<table>
<thead>
<tr>
<th>Msgs/Day</th>
<th>Estimated Battery Life (Days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>750 Days</td>
</tr>
<tr>
<td>2</td>
<td>500 Days</td>
</tr>
<tr>
<td>3</td>
<td>400 Days</td>
</tr>
<tr>
<td>6</td>
<td>200 Days</td>
</tr>
<tr>
<td>24</td>
<td>80 Days</td>
</tr>
</tbody>
</table>